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Abstract

Binominal each is known to exhibit selectional requirements on the noun phrase
that immediately precedes it. The goal of this paper is to reduce these selectional
requirements to a single requirement of monotonic growth of measurement in relation
to the ‘size’ of distributivity. More concretely, it is argued that binominal each imposes
a constraint on the functional dependencies arising from distributive quantification,
requiring that the measurement of its host grows monotonically with the number of
values being distributively quantified. To make constraints on dependencies formally
explicit, I devise a version of dynamic plural logic with features from van den Berg
(1996) and Brasoveanu (2008, 2013) to semantically represent dependencies arising
from evaluating distributive quantification. The use of a dynamic logic, coupled with a
delayed evaluation mechanism in terms of higher order meaning (Cresti, 1995; Swart,
2000; Charlow, 2021, allows the constraint to act as an output context constraint on
distributive quantification, which mirrors the use of output constraints pioneered by
Farkas (1997, 2002b) and and further developed in Brasoveanu (2013), Henderson
(2014) and Kuhn (2017).

1 INTRODUCTION

Each is a distributive marker in English that can occur in a few grammatical positions. It
may appear as a determiner, as shown in (1), as a pre-verbal adverb, as shown in (2), or
as a post-nominal element, as shown in (3). When appearing in the last position, it is often
referred to as ‘binominal each’, following the terminology of Safir & Stowell (1988).1

(1) Each girl saw two movies. Determiner

(2) The girls each saw two movies. Adverbial

(3) The girls saw two movies each. Binominal

Many studies have recognized the distributive function of each in all of the three positions,
which is responsible for making sure that seeing of two movies is true of every single
girl being considered. They have also noted, however, that binominal each seems to
communicate something more than just distributivity, in the form of morpho-syntactic and
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160 Jess H.-K. Law

interpretive requirements on its host, i.e., the noun phrase immediately preceding it.2 These
requirements, to be introduced in more detail in section 2, are brief ly summarized below:
The variation requirement: binominal each, like markers of dependent indefinites, requires
its host to co-vary with a distributive quantifier (Cable, 2014; Champollion, 2015; Kuhn,
2017). Because of this requirement, it is infelicitous to identify two movies that every girl
saw in (4). This requirement is subject to more discussion in section 2.1.

(4) The girls saw two movies each, #namely, Inception and The Godfather.

The counting quantifier requirement: the host must have a counting component, which may
be a numeral like two but not a quantificational determiner like some, as exemplified by
(5) (Safir & Stowell, 1988; Sutton, 1993; Szabolcsi, 2010). This requirement is taken up
further in section 2.2.

(5) The girls saw two/*some movies each.

The monotonic measurement requirement: the host must be associated with monotonic
measurement (Zhang, 2013), such as the measurement of volume but not the measurement
of temperature, as exemplified by (6). This requirement is discussed further in section 2.3.

(6) The drinks are 6 ounces/*60 degrees each.

These requirements are unique to binominal each and are not found with each in other
positions. The goal of this paper is to provide a single requirement, called a monotonicity
constraint, that subsumes these three sets of seemingly unconnected empirical observations.
To simply put, for (3) this constraint requires a monotonic mapping from the number of girls
to the measurement of the movies they saw. A mapping is taken to be monotonic here when
it is non-constant and non-decreasing. Using (3) as a concrete example, the monotonicity
constraint requires that the number of movies does not remain constant or decrease when
more girls are considered.

A monotonicity constraint of this kind has an intimate connection with distributive
quantification: distributive quantification can establish a linking relation between the values
in its restriction (e.g., the girls in (3)) and the values in its scope (e.g., the movies seen in
(3)). The linking relation makes it possible to talk about monotonic mappings between
values in the restriction and values in the scope of distributive quantification. The same
type of linking relation has been independently motivated by a host of previous studies
to account for quantificational subordination, dependent indefinites, and adjectives with a
sentence-internal reading (Krifka, 1996a; van den Berg, 1996; Nouwen, 2003; Solomon,
2011; Brasoveanu, 2008, 2011; Henderson, 2014; Kuhn, 2017). I follow previous studies
and refer to this kind of linking a functional dependency or a dependency for short. The
formal, explicit construction of a dependency is done with a version of dynamic plural logic

2 Following Safir & Stowell (1988), I assume that binominal each is base-generated in a post-nominal
position and forms a constituent with its host. The motivation for this particular constituency comes
from wh-movement and passivization:

(i) How many girls each did the men see? (Safir & Stowell, 1988:ex.5a)
(ii) One girl each was seen by the men. (Safir & Stowell, 1988:ex.5b)

Alternatives to the base-generation analysis have also been explored. For example, Stowell (2013)
proposes an analysis that derives binominal each from adverbial each.
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The Mereological Structure of Distributivity 161

Figure 1 A sample dependency (i.e., linking relation) established by interpreting The girls saw two
movies each in a context in which Anna saw Ali and Star War, but Beth and Carol both saw Inception
and The Godfather.

Figure 2 A dependency arising from distributive quantification has a mereological structure.

in section 4, Before that, I speak of a dependency arising from distributive quantification
only informally, using visualizations like Figure 1 to indicate what a dependency introduced
by distributive quantification looks like.

Although studies abound on dependencies established by dynamically interpreting dis-
tributive quantification, a property about these dependencies remain unexplored, namely,
that dependencies have a nontrivial mereological structure. For concreteness, the mereo-
logical structure of the dependency in Figure 1 is visualized in Figure 2. With this kind of
mereological structure, we can speak of not only the girls and the movies they saw, but
also how the sizes of the two pluralities relate. The mereological nature of dependencies has
not played a role in previous discussions of dependencies but is crucial for formulating the
monotonicity-based account of binominal each in this paper.

The monotonicity constraint of binominal each can be seen as a special way of using
dependencies arising from distributive quantification—it is a constraint on how the sizes
of two mereological structures relate. In this sense, although the semantics proposed for
binominal each aligns it, in broad terms, with the semantics for markers of dependent
indefinites devised in Henderson (2014) and Kuhn (2017), it crucially differs from them
in the need to access the mereological structure of a dependency. If the current approach is
on the right track, it lends support to treating distributivity as a form of plurality with a
mereological structure, as advocated in the tradition of Dynamic Plural Logic (van den Berg,
1996; Nouwen, 2003; Brasoveanu, 2008), and event-based distributivity (Schein, 1993;
Lasersohn, 1995; Champollion, 2010). After all, having a nontrivial mereological structure
is precisely what plural structures are known for.

To build functional dependencies with a mereological structure, I sketch a variant of
Dynamic Plural Logic that shares important features with both van den Berg (1996) and
Brasoveanu (2008). Binominal each is able to compositionally access these dependencies
after taking split scope (together with its host) over distributivity with the help of a higher
order meaning (Cresti, 1995; Swart, 2000; blackCharlow, 2021). The use of higher order
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162 Jess H.-K. Law

meaning for accessing dependencies compositionally is another feature that distinguishes
the present study from previous studies on dependent indefinites (e.g., Henderson, 2014;
Kuhn, 2017).

This paper proceeds as follows. Section 2 takes up the three selectional requirements
binominal each imposes on its host. Section 3 offers the informal generalization that
binominal each imposes a monotonicity constraint on the mereological structure of
the dependencies arising from distributive quantification. Readers only interested in the
monotonicity generalization and not how it is formally and compositionally implemented
only needs to read up to the end of section 3. Section 4 provides a formal, compositional
implementation of the monotonicity constraint in a dynamic plural logic. Section 5 provides
a comparison of my analysis of binominal each with the analyses put forward in previous
studies. Sections 6 and 7 discuss the nature of output-context constraints as well as potential
challenges to the monotonicity generalization. Section 8 concludes.

2 THE SELECTIONAL REQUIREMENTS OF BINOMINAL EACH ON ITS

HOST

The classical analysis of binominal each is that it contributes a distributive operator
(Link, 1987; Safir & Stowell, 1988; Zimmermann, 2002; Dotlačil, 2012), just like its
close correlate adverbial each (as analyzed in Link, 1987; Roberts, 1987; Schwarzschild,
1996, among many others). However, many studies have observed additional properties
of binominal each that do not directly follow from it being a distributive operator (e.g.,
Safir & Stowell, 1988; Sutton, 1993; Zimmermann, 2002; Stowell, 2013; Cable, 2014;
Zhang, 2013). This section is devoted to familiarizing the reader with these properties. To
facilitate the discussion, let me introduce some terminology for referring to different parts
of a sentence with binominal each using the example in (7).

(7)

Key︷ ︸︸ ︷
The girls

Share︷ ︸︸ ︷
saw two movies︸ ︷︷ ︸

Host

each.

The noun phrase that immediately precedes binominal each is called the host of binominal
each. Following the terminology in previous studies on distributivity (Choe, 1987; Zimmer-
mann, 2002; Champollion, 2017), the noun phrase being distributively quantified, typically
a plural expression occupying the subject position, is called the (Distributive) Key. The
entire predicate following the Key is called the (Distributed) Share.

2.1 The variation requirement
Safir & Stowell (1988) is the earliest study, as far as I know, to notice the variation
requirement of binominal each. They observe that in a sentence like (8), there is a strong
preference that the girls did not all see the same two movies. In fact, if one tries to add a
continuation clause to identify two particular movies, as done in (9), the result becomes
quite odd.

(8) The girls saw two movies each.

(9) *The girls saw two movies each, namely Avatar and Ice Age.

Safir & Stowell (1988) treat binominal each as a polyadic distributive operator that
quantifies over sets provided by two nominals (hence the name ‘binominal’.) According
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Figure 3 Both total and partial variation are acceptable for binominal each.

to them, the quantification in (8) yields a one-to-one correspondence between girls and
movies, such that each girl saw a different set of two movies.3

Moltmann (1991) points out that the one-to-one correspondence condition is too strong.
This is because a sentence like (8) is judged true not only when there is a one-to-one
correspondence between the girls and the movies (or a total variation of the movies), such
as the scenario shown in Figure 3 (left), but also when there is only partial variation of the
movies, such as the scenario shown in Figure 3 (right).4

Moltmann (1991) suggests weakening the variation requirement to a condition of distinct
discourse referents (d-refs), noting that distinct d-refs do not necessarily have distinct
values. A problem with Moltmann’s characterization is that since distinct d-refs do not
necessarily require distinct values, they fail to model the variation requirement altogether.
Recent studies settled on characterizing the variation requirement as a non-constant
correspondence (Cable, 2014; Champollion, 2015; Kuhn, 2017), an insight borrowed from
work on dependent indefinites.

Generally speaking, a dependent indefinite is an indefinite noun phrase with a morpho-
logical marker that induces a distributive interpretation of the sentence.5 In addition, the
morphological marker bears an additional component requiring the indefinite to contribute
a witness that co-varies with the Key.6 The following sentence from Hungarian (cited from
Farkas, 1997) illustrates a distributed numeral marked by numeral reduplication:

(10) Minden gyerek olvasott egy-egy konyvet.
every child read a-a book
‘The children read one book each.’ Hungarian

a. Distributivity inference: Each child read a book.
b. Variation inference: More than one book was read.

3 Safir & Stowell (1988) credits Jim Higginbotham (p.c.) for suggesting the one-to-one correspondence
condition.

4 More formally, Figure 3 (left) represents a bijective function while Figure 3 (right) represents a non-
injective surjective function.

5 Dependent indefinites are known by various names. They are called ‘dependent indefinites’ in Farkas
(1997, 2002a,b), Henderson (2014), and Kuhn (2017) and ‘distributive numerals’ in Cable (2014). In
languages that use reduplication to mark dependent indefinites, they are commonly referred to as
‘reduplicated numerals’ (Gil, 1988; Balusu, 2005). Since dependent indefinites signal distributivity
without being close to the distributivity key, they have also been characterized as exhibiting ‘distance
distributivity’ (Zimmermann, 2002; Cable, 2014).

6 I use ‘co-vary’ in the same way it is used in Beghelli et al. (1997), i.e., a variables y co-varies with a
variable x iff not all values of x are associated with the same value of y . This type of co-variation
is also more formally referred to as ‘variable dependence’ in this paper. The term ‘non-constant
correspondence’ can be seen as an informal characterization of the same concept.
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164 Jess H.-K. Law

Couched in various frameworks, Farkas (1997, 2002a,b), Balusu (2005) and Henderson
(2014) have proposed that the variation requirement follows from a special plurality
condition rooted in dependent indefinites. The special plurality condition requires a non-
constant correspondence between values introduced by a dependent indefinite and values
being distributively quantified.7 I review, in section 5.1, how the variation requirement of
dependent indefinites is treated in the plurality approach, using Henderson (2014) as an
example. It suffices at this point to know that attempts to extend the plurality treatment
of dependent indefinites to binominal each, such as Champollion (2015) and Kuhn (2017),
have been largely successful in modeling the variation requirement of binnominal each.8

However, despite the empirical adequacy in handling the variation requirement, the plurality
approach fails to provide insight into two other puzzling requirements of binominal each,
namely, the counting quantifier requirement and the monotonic measurement requirement.
These requirements are discussed in the next two subsections.

2.2 The counting quantifier requirement
It is generally agreed that binominal each forms a constituent with its host (e.g., Burzio,
1986; Safir & Stowell, 1988). In addition, studies have shown that binominal each seem
to select some forms of indefinites as its host (e.g., Safir & Stowell, 1988; Zimmermann,
2002; Stowell, 2013). The most precise description, as far as I know, comes from Sutton
(1993), who concludes that only counting quantifiers, i.e., noun phrases with (modified)

7 The plurality requirement is weaker than a one-to-one correspondence. However, Henderson (2014)
(2014:fn.15) notes that although the plurality requirement seems to be truth-conditionally adequate,
native speakers of Kaqchikel have a preference for full covariation, i.e., a one-to-one correspondence.
A similar preference seems to also hold for binominal each (Simon Charlow, p.c.).

8 A few other strategies have been explored to model the variation requirement. In Choe (1987),
the variation requirement is used to signal the obligatory narrow scope of the host of binominal
each. However, it must be made clear that while narrow scope may give rise to co-variation, it
does not guarantee it. For this reason, the variation requirement cannot be simply restated as a
narrow-scope requirement, contrary to the claim in Choe (1987). Another possibility that has been
considered is to generate the variation requirement as an implicature. For concreteness, the wide
scope indefinite interpretation entails the narrow-scope indefinite interpretation. By using binominal
each to explicitly signal the narrow-scope indefinite interpretation, one indicates that the wide
scope indefinite interpretation is false, hence triggering a variation implicature. This possibility is
briefly considered in Henderson (2014) and discussed in more detail in Kuhn (2015) (2015: Ch.3.6).
However, both Henderson (2014) and Kuhn (2017) reject a scalar implicature account for the variation
requirement. Henderson (2014)’s main objection is that scalar implicatures should be cancellable
when the context fails to support it. However, when the variation requirement of dependent indefinites
and binominal each fails, ungrammaticality is observed. Kuhn (2015) cautions using cancellability
to diagnose scalar implicatures, as more recent studies have identified a host of grammaticalized,
obligatory scalar implicatures (see Chierchia, 2006; Chierchia et al., 2011; Fox, 2007, a.o.). Using
data from American Sign Language, Kuhn (2015) argues that it is desirable to analyze dependent
indefinites and adjectives with a sentence-internal reading, like same and different , as a unified
class of phenomena. His concern for a scalar implicature approach is that it lacks generality: while
it may be a reasonable account for dependent indefinites and binominal each, it cannot be extended
to adjectives with a sentence-internal reading. I do not pursue an implicature analysis in terms of
competing scope configurations as it fails to account for the counting quantifier requirement and the
monotonic measurement requirement.
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numerals or vague quantity words like many, a few or several, can host binominal each
(see also Szabolcsi, 2010).9 All other noun phrases are rejected as a host of binominal each.
The contrast between counting quantifiers and other quantifiers is illustrated in (11) and
(12).10

(11) The girls saw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

two
at least two

more than two
a few

several
many

a lot of

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

movies each.

(12) *The girls saw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅
some

a certain
the

those
few
most
all

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

movie(s) each.

Most previous studies that take up the counting quantifier requirement take it to ref lect a
need for indefinites or number terms. For example, Zimmermann (2002) takes binominal
each to be only composable with an indefinite. However, this analysis over-generates, as
many indefinites in (12) cannot host binominal each, such as some movies and a certain
movie. In fact, many speakers even dislike regular indefinites with the determiner a for
hosting binominal each, according to Safir & Stowell (1988) (1988:(7a)):

(13) %The men saw a jewel each.

Cable (2014) tries to reduce the counting quantifier requirement to a subcateogorization
for number terms. This has the effect of ruling out the hostile hosts in (12) as they do
not contain any number term. There are two problems with this type of reduction. At an
empirical level, it does not straightforwardly explain why the indefinite article becomes
more acceptable when it is part of a counting quantifier or a measure phrase, as in (15).

(14) The men saw a few jewels each.

(15) The children ate a bag of candy each.

9 The term counting quantifier does not have an agreed-upon definition in linguistics. For example, while
few is taken to be a counting quantifier in Beghelli & Stowell (1997), it is not treated as one in Sutton
(1993).

10 To some speakers, some and few are better than the rest in (12) (Simon Charlow, p.c.). Safir & Stowell
(1988) suggest that some of the NPs are slightly more acceptable than some NPs when they serve as
the host. They judge the latter as unacceptable. I have omitted the singular indefinite determiner
a from (12) as it exhibits inter-speaker variability. I will return to the inter-speaker variability of
indefinites involving a in section 3.3.
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Postponing to section 3.3 a more in-depth analysis of the contrasting roles of the indefinite
article in (13) on the one hand and (14) and (15) on the other hand, what is worth
highlighting here is that the counting quantifier requirement does not follow merely from a
subcategorization rule against the indefinite article a.11

At a theoretical level, even if it is empirically adequate to explain the counting quantifier
requirement as a need for number(-like) terms, it still raises the question why number terms
matter at all for a distributivity marker. Surprisingly, an answer to this question does not
come from number terms themselves, but from a component intimately related to them,
namely, measure functions. In the next subsection, I show that binominal each is sensitive to
the type of measure function associated with its host. Once the measurement sensitivity is in
place, the counting quantifier requirement follows as all counting quantifiers are associated
with an appropriate measure function (i.e., cardinality).

2.3 From monotonic measurement to monotonicity in relation to distributivity
Zhang (2013) is the first to observe that the type of measurement plays a crucial role in
constraining what noun phrases may host binominal each: monotonic measurements give
rise to friendly hosts but non-monotonic measurements give rise to hostile hosts. Postponing
a review of Zhang (2013)’s own account until section 5, let me give weight to Zhang’s
observation by offering some background on the semantics of measurement.

In the literature on measurement, it is widely assumed that numeral expressions such as
two students, seven feet, and 30 miles per hour have more structure than meets the eye.
In addition to the numeral and the common noun, they also contain measure functions
such as cardinality, height, and speed. Many studies assume that measure functions are
either directly syntactically represented in certain noun phrases (e.g., Krifka, 1995) or they
are contextually associated with functional categories that are syntactically represented in
certain noun phrases (e.g., Hackl, 2000; Schwarzschild, 2006). For the purpose of this study,
I assume that measure functions are syntactically represented in noun phrases like counting
quantifiers and measure phrases.

According to Lønning (1987), a measure function denotes a mapping from a class of
physical objects to a degree that preserves a certain empirically given ordering relation,
such as “be heavier than” (for weight) or “be cooler than” (for temperature). Degrees are
further mapped to numbers by unit functions like pound or kilogram.

Schwarzschild (2006) and Wellwood (2015) further classify measure functions into
two types—monotonic and non-monotonic measure functions.12 These two types of
measure functions differ with respect to the relationship between an object domain and

11 The challenge being mounted here is not fool-proof. It can be explained away by assuming that what
binominal each subcategorizes for is a degree quantifier, rather than a degree or a number. It is
possible to treat number terms like three and five, counting phrases like a few, and measure phrases
like a bag of as degree quantifiers along the lines of Kennedy (2015).

12 A closely related characterization of monotonic measure functions is extensivity (Krifka, 1989).
However, while extensivity requires additivity, as defined in (i) (a simplified version based on Krifka,
1989: D24), monotonicity does not, as shown in (24), and hence is weaker than the extensivity.

(i) A measure function μ is additivity iff ∀x∀y : μ(x) + μ(y) = μ(x ⊕ y)

As far as I know, there is no convincing empirical argument on whether the right notion for characterizing
measure functions in natural language should be extensivity or monotonicity. Although both termi-
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a corresponding a degree domain. More concretely, a monotonic measure function like
weight preserves the part-whole structure in the two domains, so that the weight of the
entire object is always bigger than the weight of any proper part of the object; whereas
temperature is non-monotonic since the temperature of a divisible object is not always
bigger than the temperature of any of its proper parts.
The examples in (16) and (17) demonstrate Zhang (2013)’s observation that binominal each
can only be hosted by a noun phrase with a monotonic measure function. All the measure
functions in (16) are monotonic while the ones in (17) are non-monotonic.13

(16) Monotonic measurement
a. The boys read two books each. cardinality
b. The girls walked three miles each. distance
c. The windows are four feet (tall) each. height

(17) Non-monotonic measurement
a. *The drinks are 60 degrees (Fahrenheit) each. temperature
b. *The girls walked at three miles-per-hour each. speed
c. *The gold rings are 24 Karat each. purity

Let me address three potential concerns here. The first one is a concern about form. Some
of the non-monotonic measure phrases seem more complex than the monotonic ones, such
as the case with (87), or less frequent, as in the case of (17-c). To sharpen the monotonic
measurement requirement, it is desirable to construct a minimal pair. The two examples in
(18) both have a host in the form of a measure phrase 60 degrees and serve this purpose.
The one associated with temperature (which is non-monotonic) is still unacceptable while
the one associated with angle degrees (which is monotonic) becomes acceptable.14

(18) a. *The drinks are 60 degrees (Fahrenheit) each. temperature
b. The angles are 60 degrees each. angle

Another concern is that measurements like cardinality, distance, and height may be in
some sense more basic (or concrete) than measurements like temperature, speed, and
purity. So, perhaps it is the basic-ness of measurement that binominal each cares about

nology exist to characterize the same set of measure functions, I opt for the term monotonicity in this
paper as this weaker notion is a better characterization of the properties of binominal each.

13 While all the sentences in (16) are judged as acceptable, not all sentences in (17) are judged as
unacceptable by the five native speakers I consulted. In particular, (18-a) received an average rating
of 2.2, (87) an average rating of 2.4, and (17-c) an average rating of 2.8. All of the ratings are based
on a 5-point Likert scale, with 1 labeled as ‘completely unacceptable’, 3 labeled as ‘marginal’, and 5
labeled as ‘fully acceptable’.

14 For (18-b) to be fully acceptable, some speakers prefer intersections placed close to each other to
form adjacent angles or arranged to form internal angles of a polygon, while others, such as one of
the reviewers, are fine with a random arrangement. It is not clear to me what underlies the inter-
speaker variation. To the extent that arrangement matters, it provides some support for the claim
that measurement of a collection is involved, as previous studies have shown that arrangement is a
factor determining measurement of collections (Scontras & Goodman, 2017).
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rather than the monotonicity distinction. Comparing examples like (19-a) on the one hand
and examples like (19-b) and (19-c) (provided by a reviewer) can help address this concern.

(19) a. *The drinks are 60 degrees (Fahrenheit) each. temperature
b. The naughty children raised the living room temperature by two degrees each.

temperature change
c. The drops of hot water raised the temperature of the solution by two degrees each.

temperature change

The measure function associated with the host in (19-a) is temperature. Since it does
not track the massiveness of the object being measured, it is a non-monotonic measure
function. By contrast, the measure function associated with the host in (19-b) and (19-c)
is temperature change. Unlike temperature, temperature change is additive—if a child
raised the temperature two degrees and another child raised it two more degrees, then
together they raised the temperature four degrees. Since there is no reason to believe that
the measure function temperature change is in any way more basic or concrete than the
measure function temperature, I take the contrast in the examples in (19) to lie in the
monotonicity distinction of the measure functions associated with the hosts.
The last concern is partly related to the second one. One may think that expressions like
two books and three miles can be associated with distinct entities (as they could be argued
to be more concrete in some sense). After all, one can easily talk about distinct sets of
two books and distinct 3-mile paths. By contrast, expressions like 60 degrees and 24 Karat
cannot be easily associated with distinct entities. What does it mean to have two distinct 60-
degree temperatures and two distinct 24-Karat purities? However, the fact that (19-b) and
(19-c) are well-formed shows that individual variation does not really matter. Two degrees
as a measurement of temperature change is also hard to associate with distinct entities—to
the extent that it makes sense to talk about two distinct 2-degree changes in temperature,
one is inherently thinking in terms of additivity, which is a defining property of monotonic
measurement.

Zhang (2013)’s observation about measurement sensitivity is an important one as it
allows us to make sense of the counting quantifier requirement without stipulating it
as a syntactic, subcategorization requirement—counting quantifiers like two movies, a
few books, and many chairs are special because they are all associated with a particular
monotonic measure function, namely, cardinality. As a result, the counting quantifier
constraint is reducible to the need for a monotonic measure function.

Zooming out of distributivity, binominal each is not the only natural language expres-
sion to which the distinction between monotonic and non-monotonic measurement matters.
Schwarzschild (2002, 2006) points out a similar contrast in pseudo-partitives: pseudo-
partitives admit monotonic measurement, as in (20), but reject non-monotonic measure-
ment, as in (21).

(20) a. two pounds of cherries weight
b. thirty liters of water volume

(21) a. *five degrees Celsius of the water in this bottle temperature
b. *five miles an hour of running speed
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Interestingly, temperature change can occur in pseudopartitives, which only admit mono-
tonic measure functions. Consider the following example, due to Champollion (2017).

(22) The scientists from Princeton and Harvard universities say just two degrees Celsius
of global warming, which is widely expected to occur in coming decades, could be
enough to inundate the planet. (Champollion, 2017:141)

Given the monotonic nature of the measure function temperature change, it is hence not
surprising that it can support the use of binominal each.
In addition, Wellwood (2015) observes similar contrasts in comparatives. Both sentences in
(23) can express comparisons involving monotonic measurement, but neither can express a
comparison involving non-monotonic measurement. For example, in (23-a) the amount of
the soup that Al bought is larger than the amount of the soup that Bill bought. The amount
may be understood in terms of volume or weight, but not temperature.

(23) a. Al bought as much soup as Bill did. volume, weight, *temperature
b. Al ran as much as Bill did. time, distance, *speed

Schwarzschild (2002, 2006) accounts for the sensitivity of measurement constructions to
types of measure function by invoking the notion of monotonicity. Wellwood (2015)
provides a formal definition of this monotonicity condition on measurement, as shown
in (24). This condition requires that the part-whole structure of the domain of a measure
function be strictly preserved in the domain of degrees.

(24) Monotonic Measurement (Wellwood, 2015) A measure function μ is monotonic iff
a. there exists x, y ∈ D�part , such that x �= y, and
b. for all x, y ∈ D�part , if x �part y, then μ x <deg μ y

The monotonicity condition of Schwarzschild (2006) and Wellwood (2015) requires that
only monotonic measure functions can be used in measurement constructions like pseudo-
partitives or comparatives. Consequently, monotonic measure functions, but not non-
monotonic ones, pass the condition. I argue that at the core of binominal each is also
a form of measurement-related monotonicity condition, but one that makes critical use
of distributivity, unlike the monotonicity condition on measurement constructions, which
does not appeal to distributivity. The rest of this paper is devoted to fleshing out such
a monotonicity condition, explaining its relationship to distributive quantification, and
extending it to account for the three requirements discussed in this section.

3 A MONOTONICITY CONSTRAINT FOR BINOMINAL EACH,

INFORMALLY

I propose that a sentence with binominal each makes a two-part contribution: distributivity
and monotonicity. The former may be contributed by binominal each itself, as argued
in many other studies that take each to be a distributive operator (e.g., Zimmermann,
2002; Dotlačil, 2012; Champollion, 2017), or it may be contributed by a separate
distributive operator, as suggested in Champollion (2015) following Henderson (2014)’s
(2014) semantics for dependent indefinites. I leave both options open as there has been
relatively little work on the (potentially degraded) acceptability of binominal each when
a distributive quantifier is present, as exemplified in (25) (see also related discussions in
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Figure 4 A dependency arising from distributive quantification.

Champollion, 2015 and Kuhn, 2017).15 Generally speaking, the less compatible binominal
each is with a distributive quantifier, the more appealing is the claim that it contributes a
distributive operator. For the sake of concreteness, the semantics developed for binominal
each in this paper assumes the second option, namely, that the distributive inference is
contributed by a separate distributive operator rather than by binominal each.16 It is
perhaps worth emphasizing that the first option can also be pursued with some minor
changes to the lexical entry of binominal each (a lexical entry for the ‘distributive-version’
of binominal each is given in footnote 39 for concreteness).

(25) ?Every girl saw two movies each.

What is important for us is that the distributivity component establish a dependency
between values introduced by the Key and values introduced by the host. For example,
(26) allows us to relate the girls to the movies they saw, as indicated by the left dependency
in Figure 4. The dependency is notated as f , which can be thought of as a function that
maps each girl to the movies she saw and also sums of girls to the sums of movies they
saw. In other words, f encodes the functional dependency induced by distributivity and is
cumulatively closed (marked by *, following Link, 1983). This dependency, whose formal
formulation will be given in section 4, provides an important ingredient for formulating the
monotonicity constraint for binominal each.

(26) The girls saw two movies each.

Another piece of ingredient needed to assemble the monotonicity constraint is a measure
function μ. What μ does is map the individuals contributed by the host to a degree (which
can be modeled as a point on a scale). For example, the cardinality measure function
associated with two movies in (26) maps the movies each girl saw to the number 2 and

15 It was brought to my attention that Bauman et al. (2012) reported middling judgements for sentences
like (25). However, I was unable to secure the work for evaluation. The sentence is marked with ‘?’
instead of ‘%’ to indicate its potential degradedness, following the suggestion from a reviewer.

16 There are two nontrivial consequences from not attributing distributivity to binominal each. First,
it remains unexplained why binominal each is not readily compatible with distributive quantifiers,
as pointed out by a reviewer of this paper. Second, it needs to be explained why the distributive
interpretation, but not the collective or cumulative interpretation, licenses the use of binominal each.
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the movies they collectively saw to the number 4, as indicated by the mapping on the right
in Figure 4.

Together f and μ form a composite mapping from the the plurality being distributively
quantified to the degrees associated with the size of the host.17

A monotonicity constraint in association with distributivity is precisely a requirement
that the composite mapping be monotonic. That is, the range of μ should preserve the
part-whole relation found in the domain of f . For concreteness, a framework-neutral
monotonicity constraint is formulated in (27).

(27) Monotonicity in association with (the mereological structure of) distributivity A
measure function μ is a monotonic measurement in association with f iff the following
two mappings hold:
a. Non-constant mapping

There are distinct a, a′ ∈ Dom f . μ(f a) �= μ(f a′)
b. Non-decreasing mapping

For all a, a′ ∈ Dom(f ). a ≤ a′ → μ(fa) � μ(f a′)

Let me elaborate on the two mappings that make up the monotonicity constraint. The
non-constant mapping in (27-a) essentially requires measurement variability in the range of
f . It partially resembles the domain plurality clause found in the definition of monotonic
measure functions in (24-a). Both require that there are distinct individuals in the domain
of a function. In the domain plurality clause in (24-a), the requirement is imposed on the
domain of the measure function. However, in the non-constant mapping clause in (27), the
requirement is not imposed on the domain of the measure function, but on the domain of
f , which is the plurality being distributively quantified. The non-constant mapping clause
also has an additional requirement of measurement variability in the range of f . What this
amounts to is that the host must exhibit variability in measurement in association with the
plurality being distributively quantified. As will be shown shortly, non-constant mapping is
useful for capturing the variation requirement of binominal each.

17 In fact, the mapping can be thought of as the composite function μ ◦ f , constructed with help of
the two mappings f and μ. A reviewer asked if the composition function μ ◦ f may itself be seen
as a measure function. That is, instead of simple measure functions like weight or height, which
measure people’s weight or height, μ ◦ f measures people in terms of movies watched. As also
pointed out by the reviewer, such a move has the benefit of rendering (27) as essentially identical
to (24). I think this is a correct paraphrase of what the composition function is formally doing—
it takes any plural individual and maps all its parts to the measurement of its host. However, I do
not think that it is conceptually appealing. For one thing, there is no reason why measurement of
a plurality has to involve distributivity. A simple plurality with a part-whole structure will suffice, as
witnessed in sentences like The books weigh 10 pounds—there is no need to bundle distributivity
and measurement. However, there is a way of thinking μ ◦ f in terms of a complex measure function
that is conceptually quite appealing and is intimately related to the reviewer’s suggestion. It is to think
of it as measuring some dimension of a distributive dependency. A dependency is essentially a multi-
dimension object, in the same way that an event is. This object may be measured on its Key dimension
(i.e., the dimension representing all the values introduced by the Key) or on its Share dimension (i.e.,
a dimension that depends on the Key). Such a move requires us to think of dependencies as concrete
entities that can be measured, in much the same way that individuals paired with events or situations
can be counted like concrete individuals in studies such as Krifka (1991) and Barker (1999).
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The non-decreasing mapping in (27-b) requires that the part-whole relation found in the
domain of f (i.e., the girls) be mapped non-decreasingly to the measurement of the range of
f (i.e., the movies). Since f encodes a dependency induced by distributivity, this amounts to
making reference to the mereological structure of distributivity. In other words, we are refer-
ring to parts of a dependency that stand in a part-whole relation. Modulo the association
with f , (27-b) is a standard definition of non-decreasing monotone functions. It is weaker
than the definition of monotonic measure functions found in Wellwood (2015) as cited in
(24-b), which picks out strictly increasing functions among the non-decreasing ones.18

3.1 Capturing the variation requirement
Recall from the discussion in section 2.1 that the variation requirement requires that the
host of binominal each co-varies with the Key. For example, (28) requires the girls to not
all see the same two movies.

(28) The girls saw two movies each.

The monotonic measurement constraint stated in (27) straightforwardly captures the
variation requirement. The crucial piece comes from (27-a), which requires that there
are at least two distinct values in the domain of f and they are associated with distinct
measurements of the host. If the distributivity contributes a dependency like the one in
Figure 4, (27-a) is satisfied: there are two distinct individuals, for example, anna and
anna⊕beth, such that they saw different numbers of movies. Concretely, the atomic
individuals saw two and the plural individual saw four.19 However, if distributivity
contributes a dependency that maps all the girls to the same two movies, then the constraint
cannot be satisfied: there are no girls (atomic or plural) that saw different numbers of
movies.

At first glance, capturing the variation requirement, which is originally stated as
variation in individual identity, in terms of measurement variability may seem like merely
a clever trick. Adding up different individuals of course creates a more massive plural

18 The decision on a weaker form of monotonicity, one in terms of a non-decreasing mapping, instead
of a stronger form requiring a strictly increasing mapping, as suggested in Wellwood (2015) for
monotonic measure functions and adapted below in (i) to incorporate association with distributivity,
is empirically motivated. If a strictly increasing mapping is required, then in (26) no pairs of girls can
watch the same two movies, contrary to fact, which only requires at least two girls to see different
movies. In other words, the fact that the composite function in Figure 4 is acceptable suggests that
the mapping should be non-decreasing rather than strictly increasing.

(i) Strictly increasing mapping (rejected) For all a, a′ ∈ Dom f . a < a′ → μ(f a) < μ(f a′)

On a related note, a reviewer asks if a case could be made that perhaps all measure functions
characterized as involving a strictly increasing function in Wellwood (2015) actually involve a weaker,
monotonic (non-decreasing and non-constant) function. While I hold the same suspicion, it is not
easy to test the hypothesis. To get the hypothesis tested, one would need to find measure functions
that are monotonic but not strictly increasing and test if they pattern differently from their strictly
increasing peers in linguistically meaningful ways. So far, I have not found satisfactory examples for
such measure functions.

19 If we compare the number of movies watched by each girl, there is no variation in the measures.
The variation in measures only arises when the girls form a part-whole structure and hence their
dependent measures also form a part-whole structure.
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individual and hence yields a larger measurement. However, measurement variability is
more adequate than individual variation as an explanation for the variation requirement
when hosts beyond counting quantifiers are considered.

In particular, measure phrases can also serve as a host for binominal each, as shown in
(29).

(29) a. The angles are 60 degrees each.
b. The naughty children raised the living room temperature by two degrees each.

In (29-a), the host does not contribute any individuals other than the angle degrees. So, it
is hard to talk about individual variation. Moreover, there is no variability in the degree
associated with each angle as all of the angles are asserted to be 60 degrees. The only way
to achieve variation is by considering the mereological structure of the angles and how it
stands in relation to the angle measurements. Recall that measurement variability does not
require the host to be distinct individuals in association with distributivity. It merely requires
the host to yield distinct measurements in association with the mereological structure of
distributivity. Since concatenating two smaller angles (along a certain dimension) does yield
a straightly larger angle, measurement variability can be achieved as long as there are at
least two distinct angles being considered.

In (29-b), the measure phrase also does not contribute any individuals.20 Again,
the temperature that each child adjusted is the same, i.e., two degrees. The variation
requirement is only satisfied because the mapping from the children plurality to the degrees
of temperature change is non-constant.

3.2 Capturing the monotonic measurement requirement
Let me turn next to showing how the monotonic measurement requirement is captured by
the monotonicity constraint in (27). To begin with, it is useful to return to a sentence with a
counting quantifier host such as (26). The composite function μ◦ f is illustrated in Figure 4.
The measure function in this case is cardinality (or μcard). As discussed in the previous
subsection, μ ◦ f satisfies measurement variability as stated in (27-a). In addition, μ ◦ f also
satisfies the non-decreasing mapping as stated in (27-b). To see this, we need to check that
none of the bigger elements in the domain of μ◦f is mapped to a smaller degree in the range
of the function. Since cardinality is a monotonic measure function, a bigger number of girls
will never saw a smaller number of movies, our mapping is guaranteed to be non-decreasing.

Having seen how the monotonic measurement constraint correctly rule in counting
quantifier hosts, we turn next to how the constraint distinguishes between monotonic and
non-monotonic measure phrases. We first consider measure phrases with an unmodified
numeral, such as the ones in (30-a) and (30-b).

(30) a. *The coffees are 60 degrees each. temperature
b. The angles are 60 degrees each. angle

Since the measure phrases directly measure the entities denoted by subjects, let us assume
that the dependency f is trivial and maps any entities to themselves in the examples

20 Even if we take the measure phrase to contribute the air particles in the living room, there can
be no variation in these particles when each child raised the thermostat and the sentence is still
acceptable.
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Figure 5 Non-monotonic vs. monotonic measurement

above. This assumption is later ref lected in the definition of binominal each hosted by
measure phrases in (60-b). μ still serves to relate coffees (or angles) to their corresponding
temperature (or angle degrees). Composing these two sets of functions yields the two
composite functions in as visualized in Figure 5.

For concreteness, the coffees (or angles) are distributively checked for their temperature
(or angle degree). f encodes a functional dependency between coffees (or angles) and
themselves. μtemp (or μang) is a temperature (or angle) measure function. The subsequent
function resulting from composing f and μ is hence identical to μ. Both sentences satisfy
non-decreasing mapping as stated in (27-b). However, (30-a) fails non-constant mapping as
stated in (27-a) while (30-b) satisfies it. This is because measurement variability is missing
in (30-a), as demonstrated in 5a, but present in (30-b), as shown in Figure 5b.21

One may suspect that (27-a) alone is sufficient to guarantee the variation requirement
and the privilege of monotonic measure functions. It is not. It can be satisfied with an non-
monotonic measure function as long as the function yields different degrees for different
values in the range of f . For example, consider binominal each whose host is a measure
phrase with a modified numeral, such as (31-a) and (31-b). Figure 6 illustrates how f and
μdim work in these two sentences.

(31) a. *The drinks are more than 60 degrees each.
b. The angles are more than 60 degrees each.

21 While I am assuming here that it is defined to measure the temperature of a plural entity, this
should not be taken for granted. In many situations, the ‘collective’ temperature (or speed, or other
measures from non-monotonic measures) may not even be defined. If this is the case, then the
monotonicity constraint may be violated simply because it is impossible to measure a pluralities
on certain dimensions. However, it is not entirely clear to me that non-monotonic measurement
of pluralities is always undefined. We can talk about the velocity of a river despite the fact that
different parts of the river flow at different speeds. Similarly, we can talk about the temperature of
the earth, despite the fact that different parts of the earth have distinct temperatures. Relatedly, it
has been brought to my attention that measurement of pluralities may be represented as degree
pluralities along the lines of Dotlačil & Nouwen (2016) (see also Schwarzschild, 2006; Beck, 2010),
which are essentially collections of degrees (much like collections of individuals). As far as I can
see, this approach to measurement of pluralities is compatible with the present analysis, as long as
binominal each is taken to enforce some form of summation of two degrees. While measures from
monotonic measure functions sum up easily (as they track the bulk of the entities being measured,
which themselves can be summed), measures from non-monotonic measure functions either do not
sum up (giving rise to undefinedness) or may sum up in some way but violates monotonicity. I thank
a reviewer for drawing my attention to degree pluralities and its relevance to the present study.
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Figure 6 Modified numerals interacting with monotonic vs. non-monotonic measurement

(31-a) satisfies non-constant mapping, as the range of f has different degrees. However, it
is still not well-formed. This is because it violates non-decreasing mapping: there is a pair
of elements in the domain of f that stand in a part-whole relation whose corresponding
measurement fails to preserve the the order of the pair, as indicated by the crossing lines
in Figure 6a. By contrast, (31-b) satisfies both non-constant mapping and non-decreasing
mapping, as indicated in Figure 6b.

3.3 Capturing the counting quantifier requirement
Lastly, we predict that noun phrases without an appropriate measure function component
cannot host binominal each. A natural question that arises is how we can diagnose the
presence of a measure function component. I do not have a comprehensive answer to this
question. However, compatibility with unit words like pound(s) and mile(s) seems to be
a rather reliable test: if a determiner-like expression is compatible with these expressions,
then it can form a noun phrase that can host binominal each.22 Some examples are given in
Table 1.23 Included with each type of expression are studies that attribute measure functions
to it. There is no study that attributes measure functions to quantificational determiners
except for few (Schwarzschild, 2006) and most (Solt, 2016). However, both few and most
fail to pass the unit word test, as demonstrated in (33). For this reason, I take them to be
incompatible with the measurement component that may go with (modified) numerals and
quantity expressions.24

22 The numeral term zero is predicted to be incompatible with binominal each even if it occurs in an
appropriate counting quantifier or measure phrase such as zero books and zero miles. For some
(but not all) speakers, this prediction is borne out. It’s unclear me to what underlies the individual
variation.

23 Some sometimes does occur with unit functions, as in gained some inches and lost some pounds.
In these cases, the unit functions are interpreted as standing in for the entities they measure, i.e.,
height and weight , respectively. I have been informed that some + units are more friendly hosts
than ordinary some NPs (Simon Charlow, p.c.):

(i) The boys lost some pounds each over the summer.
(ii) *The boys lost some toys each over the summer.

24 A reviewer observes that most miles in (33-b) is improved in examples like Paul biked most miles on
Monday. (Only 20 were left to go on Tuesday.) So, its unacceptability in (33-b) may be due to other
reasons. I suspect what happens in the improved example is that miles gets to stand in for something
like the distance (in miles). Note that even in the improved environment, most miles still cannot host
binominal each.
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Table 1 Expressions that can (and cannot) host binominal each

Expressions compatibility with unit words host binominal each

(modified) numerals yes yes

two, at least/most two, e.g., two pounds e.g., two books each

more/less than two more than five miles

e.g., Hackl (2000), Kennedy (2015)

quantity expressions yes yes

a few, a couple, many e.g., a few gallons e.g., many movies each

e.g., Rett (2014), Solt (2015)

quantity comparatives yes yes

more, as many (much) as e.g., as many pounds as as many books each

e.g., Wellwood (2015)

quantificational determiners no no

no, some, few, most, every, all e.g., *most miles e.g., *most books each

(32) *The girls biked most miles each.

(33) a. Peter gained many/??few/*most pounds over the summer.
b. Paul biked many/??few/*most miles every day.

It has been noted that noun phrases with the indefinite article a are better than those with
the determiner some in hosting binominal each, although not all speakers accept the former
(Safir & Stowell, 1988; Szabolcsi, 2010; Milačić et al., 2015), as illustrated in (34).

(34) a. %The boys read a book each.
b. *The boys read some book(s) each.

Interestingly, a is also compatible with measurement units in ways that some is not, as
shown in (35). This is not at all surprising given that many linguists have argued that a is
derived from one synchronically and/or diachronically (e.g., Perlmutter, 1970; Chierchia,
2013; Kayne, 2015). Given these considerations, it is conceivable that a is ambiguous
between a numeral one and an existential determiner, while some is only an existential
determiner without a measure function component.

(35) a. Julia ran a/*some mile yesterday.
b. Peter pumped a gallon/*some gallon (of gasoline) into his car last week.
c. The sea level has risen an/*some inch over the last three months.

Note that some is not entirely incompatible with a measurement unit. The compatibility
improves when the measurement unit is in the plural form, as shown below:

(36) a. Julia ran some miles yesterday.
b. Peter pumped some gallons of gasoline into his car last week.
c. The sea level has risen some inches over the last three months.
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I will not go into why number morphology makes a difference to the compatibility of some
and measurement units.25 However, the fact the some is compatible with measurement units
can be used to further corroborate the relevance of measurement in licensing binominal
each. When a measurement unit occurs in a some NP, the some NP can host binominal
each, as shown in (37).

(37) a. The girls ran some miles each yesterday.
b. The drivers pumped some gallons of gasoline each before the electricity went out.

4 FORMALIZING THE MONOTONICITY CONSTRAINT

Now that the monotonicity constraint in association with distributivity has been estab-
lished, we are ready to embed it in a compositional semantics. It is not difficult to see what
kind of framework we need to implement this constraint compositionally. An adequate
framework should satisfy the following three criteria:

• Criterion 1: It should allow us to talk about plurality and measure functions of various
sorts.

• Criterion 2: It should be able to represent the functional dependency arising from dis-
tributive quantification. In other words, it should make concrete how f is constructed.

• Criterion 3: Since the monotonicity condition checks the measurement of the host
in association with a distributive dependency, the dependency has to be established
before the monotonicity constraint can be checked. For this reason, it is necessary
to split up the contribution of a host of binominal each, evaluating one part (i.e.,
it basic semantics as a counting quantifier or a measure phrase) inside the scope of
distributivity and the other part (i.e., the monotonic measurement constraint) outside
the scope of distributivity. The former provides the necessary ingredients for building
the functional dependencies of distributivity and hence the function f . The latter can
access f after it is assembled.

Criterion 1 is very easy to satisfy. Any framework that can be enriched to include pluralities
and measure functions can be used to model monotonicity. Therefore, a decisive choice
depends on the remaining two criteria.

There are a few frameworks that satisfy Criterion 2, including Krifka (1996a)’s (1996)
framework of DPL extended with parameterized sum individuals, van den Berg (1996)’s
framework of Dynamic Plural (Predicate) Logic (DPlL), which is also an extension of
DPL, Brasoveanu (2008)’s (2008) framework of Plural Compositional DRT. This is not
an exhaustive list. Event-based distributivity and Skolem function-based distributivity (or
universal quantification) can also be used to generate dependencies as a result of evaluating
distributivity. See Schein (1993), Lasersohn (1995) and Champollion (2017) for the former
and Huang (1996) for the latter.26 In this paper, I sketch a variant of DPlL that borrows
features from both the original DPlL and PCDRT. The merit of a DPlL/PCDRT-type logic

25 It has been observed that when a singular noun follows some, the noun phrase exhibits some kind of
epistemic effect. It is possible that that epistemic effect is incompatible with measurement units.

26 It is also worth mentioning that the linking function f that is crucial in the formulation of the mono-
tonicity constraint (e.g., (27)) bears striking resemblance to thematic functions in event semantics—a
remark credited to one of the reviewers of this paper.
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is that it not only tracks the dependency in context, but the built-in anaphoric device (i.e.,
discourse variables) allows us to access the dependency relatively easily. This type of logic
has been used to model phenomena that require reference to the functional dependency
of distributivity, such as quantificational subordination (van den Berg, 1996; Nouwen,
2003), quantifier-internal anaphora and reciprocals (Dotlačil, 2010), as well as dependent
indefinites (Henderson, 2014; Champollion, 2015; and Kuhn, 2017). It is not surprising
that the same type of logic can be extended to capture the monotonicity constraint of
binominal each, as reference to the mereological structure of a dependency is merely a
subtype of reference to dependencies.

Criterion 3 essentially asks for a split-scope mechanism. Several alternatives have been
explored in the literature of dependent indefinites, including the use of post-suppositions
(Henderson, 2014), standard scope (Kuhn, 2017), and scope of higher-order meanings
(Charlow, 2021). This paper opts for the use of higher-order meaning, following the
empirical motivations discussed in Charlow (2021).

It should be clear by now what kind of framework is needed to account for the
monotonicity condition of binominal each observed in this work. In the next sections, the
essential components of such a framework are provided. I begin by discussing the general
framework in section 4.1, followed by translating the monotonic measurement constraint
into this framework, and lastly in section 4.3 the monotonicity constraint is implemented
in a compositional manner.

4.1 Formal background: DPlL with Referential Pluralities
The direct logical predecessors of the framework used in this paper are van den Berg (1996)’s
DPlL and Brasoveanu (2008)’s PCDRT. Like DPlL, it assumes that dependencies do not arise
without distributivity; like PCDRT, it assumes referential pluralities (i.e., that the domain of
individuals have both singular and plural individuals) and sub-sentential compositionality.
These design features are elaborated upon when they get introduced later in this section.
To distinguish the present logical framework from its predecessors, it is referred to as ‘DPlL
with Referential Pluralities’. Only the core logical backbone and essential apparatuses are
introduced in this section. For a more comprehensive version of this logic, see Chapter 2 of
Law (2019).27 Readers who are familiar with the difference between DPlL and PCDRT can
treat this section as a formal appendix with the exception of Definitions 9 and 10.

4.1.1 Dynamics and plural info-states Like both predecessors, the dynamic core of the
present logical framework is built upon Dynamic Predicate Logic (DPL; Groenendijk &
Stokhof, 1991). As such, it follows the spirit of DPL and takes the interpretation of a
sentence to be a relation between contexts. In DPL, a context is a single assignment, so a
sentence is said to be evaluated to true (T) relative to an input assignment g and and output
assignment h (and a model M, omitted for readability) if and only if they belong in the
relation denoted by the sentence:

27 For readers who are interested in DPlL/PCDRT-type semantics, it is recommended that they start
with DPL (Groenendijk & Stokhof, 1991), since DPlL/PCDRT is built upon DPL. Detailed introductions
to DPlL/PCDRT are found in dissertation studies (because they do not usually have length limitations),
such as van den Berg (1996), Brasoveanu (2007), Dotlačil (2010), Henderson (2014), Kuhn (2015),
DeVries (2016), and Law (2019).
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Figure 7 A sample info-state

(38) g�φ�h = T iff 〈g, h〉 ∈ �φ�28

Superimposing a plural logic on DPL yields DPlL. This is done by blowing up the size of a
context from a single assignment to a set of assignments, known as information states (or
info-states for short), as defined below:

Definition 1. (Information state).
An information state (info-state) is a set of assignments.

A sentence in DPlL then denotes a relation between info-states. In other words, fixing
an input info-state and an output info-state determines the truth value of a sentence:

(39) G�φ�H = T iff 〈G, H〉 ∈ �φ�

Following a common practice in the literature, an info-state is represented as a matrix, as
shown in Figure 7. The first row houses the variables introduced into the info-state so far
while the first column lists all the assignments in the info-sate. Starting from the second
column, each column represents the collective value associated with a specific variable.
Starting from the second row, each row represents an n-tuple of values associated with
different variables. The entire matrix represents dependencies among variables, which are
precisely what we need for constructing a monotonicity constraint in association with a
distributive dependency.

In the original DPlL logic, although a collection of assignments may map a variable to a
set of values, a single assignment can only map a variable to a single value. This restriction is
relaxed in its cousin logic, Plural Compositional DRT (PCDRT; Brasoveanu, 2007, 2008),
in which an assignment may map a variable to a single value or a sum value (modeled as
Linkean plurals). The latter is known as a referential plurality. The present paper works
with PCDRT-type assignments, as stated in Definition 2, and hence allow both singulars
and plurals in the range of assignments.

Definition 2. (Assignment).
An assignment maps a variable to a possibly plural individual.

Introducing referential pluralities comes with a price tag, but it is necessary to deal with
domains that lack well-defined atomicity, like the domains of mass nouns, atelic events,

28 Building on this, a sentence φ is true relative to an input assignment g iff there is an output
assignment h such that g�φ�h = T. This notion of truth is useful for comparing truth in a dynamic
framework and a static framework.
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and spatial and temporal intervals (see, for example Bach, 1986). In this paper, referential
pluralities are needed to handle measure phrases like two pounds of chicken or six gallons of
water, which may not introduce atomic parts. The system thus developed has two types of
pluralities. Discourse plurality, also known as evaluation plurality, comes from considering
a plurality of assignments. Referential plurality, also known as domain plurality, comes
from considering a single assignment function that assigns a plurality to a variable.

Now that we have laid out the the architectural design of an info-state, we are almost
ready to discuss how various types of updates work in this framework. Before we do that,
let me define operations for extracting parts of an info-state. An info-state G with a set
of assignments can be restricted to a sub-info-state with a set of assignments satisfying
certain requirements. For example, (40) delivers a sub-info-state with all the assignments
associating x with a. (41) delivers a sub-info-state with all the assignments associating x
with some value in A.

Definition 3. (Sub-info-states).

(40) G|x=a := {g | g x = a}
(41) G|x∈A := {g | g x ∈ A}

In addition to restricting the assignments (i.e., the rows), we can also restrict the variables
(i.e., the columns). We use the notion in (42) to project (or extract) all the values associated
with the variable x in an info-state. Combining sub-info-states and value projection yields
a mode of value projection relative to sub-info-states, as exemplified in (43) and (44).

Definition 4. (Value projections).

(42) G(x) := {g x | g ∈ G}
(43) G|x=a(y) := {g y | g ∈ G & g x = a}
(44) G|x∈X(y) := {g y | g ∈ G & g x ∈ X}

The first type of update to be discussed is variable introduction, also known as random
assignment. It is contributed by existential quantification, as assumed in standard dynamic
semantics. What variable introduction does is introduce all values in a set D as values for a
new variable x, as defined below:

Definition 5. (Variable introduction/random assignment).
G�∃x�H = T iff there is a set D such that H = {gx→a | g ∈ G & a ∈ D}, where a may be
atomic or plural individuals.

This version of variable introduction falls in between the the corresponding operations
in PDlL and PCDRT, in the sense that it may introduce referential pluralities but is
still dependency-free.29 These design features are empirically motivated. As Criterion 1

29 Whether or not assignment functions may range over pluralities and whether or not new variable
introduction is dependency-free are two independent design choices of a dynamic plural logic.
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discussed at the beginning of this section reveals, a suitable logic for handling the
monotonicity constraint needs to model pluralities and measure phrases. Given that measure
phrases like two pounds of chicken and six gallons of water may involve measurement
of objects that lack well-defined atomicity, it is hence assumed that a single assignment
in this logic is free to assign any value, atomic or plural, to a variable. In this respect,
variable introduction aligns with PCDRT rather than DPlL. However, departing from
PCDRT but siding with DPlL, variable introduction in the present logic does not result
in variable dependence between the introduced variable and any existing variable.30 The
formal definition of variable dependence is given below:

Definition 6. (Variable dependence).
In an info-state G, a variable y is dependent on a variable x if and only if there are a, b such
that a �= b and G|x=a y �= G|x=b y. (see also Nouwen, 2003:84)

In plain words, when the values associated with y does not remain constant relative
to different values of x, then y is dependent on x. We may also say that the assignment of
values to y co-varies with the assignment of values to x. blackInhibiting variable dependence
when a new variable is introduced is a means to not generate spurious dependencies (van
den Berg, 1996:133–135). It forces variable dependence to come from a restricted source,
such as the use of a distributive operator. I will return to this point shortly.

An example should help us see how variable introduction in the present framework
works. Assume a model with a domain D containing the individuals c, d and c⊕d.
Introducing a variable x with ∃x into an info-state G involves the steps in (45). A
visualization of this process can be found in Figure 8.

(45) Steps for introducing a new variable x to an info-state G
a. Pick a non-empty subset D of values from De
b. For each g in G and each value d in D, extend g to include x in the domain of g

and d in the range of g, and collect the results in a set of assignments H (i.e., an
info-state). The number of assignments in H is the cardinality of the cross product
of G and D (|G × D|). So, if G has two assignments and D is a singleton, there are
two assignments in H. If G has two assignments and D has two members, then H
has four assignments, so on and so forth.

c. Repeat the above steps for each non-empty subset D of De. The total number of
output info-states generable from introducing x into G is the cardinality of the
power set of De minus the empty set (i.e., 2|De| − 1). So, if De has three members,
then the total number of output info-states are seven.

PCDRT departs from DPlL in both choice points but the present logic only departs from DPlL in the
first choice point. In this regard, the present logic is closer to DPlL.

30 This is not quite true for the version of PCDRT adopted in Henderson (2014), which requires variables
to have only one value at the evaluation level by default. This is an interesting strategy to remove
dependencies introduced into discourse by the powerful variable introduction mechanism in PCDRT.
The variable introduction defined here can be seen as a more ‘automatic’ way of getting rid of
undesirable dependencies—they are not generated in the first place.
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Figure 8 Variable introduction

It should now be clear that in none of the output info-states in Figure 8 is there variable
dependence between the newly introduced variable x and the extant variable y. For variable
dependence to be possible, a distributive operator is needed to scope over the operation of
variable introduction. We turn to the distributive operator next.

To induce distributive, a distributive operator is used. The definition of the distributive
operator is given below:

Definition 7. (Distributivity).
G�δx(φ)�H = T iff G x = H x & ∀α ∈ G x.G|x=α�φ�H|x=α = T

The distributive operator splits up the input info-state into substates based on the values
stored in the subscripted variable. It then checks that the formula in its scope, i.e., φ, holds
for each sub-state. Hence, for each sub-state, a distributivity update generates a set of output
sub-states. These sets of sub-states are then pointwisely put back together to form the output
info-state. If φ carries with it an existential quantifier, the new variable gets passed to the
output. This way, a door is opened up for introducing variable dependence into info-states.

Let’s take a concrete example to see how δx works. Suppose we have a formula with
an existential expression in the scope of a distributive operator, i.e., δx(∃y). Regarding the
info-state G, δx(∃y) first splits up the input info-state along the x dimension, resulting in
two atomic sub-states, as shown in Figure 9 (on page 23).

Then intermediate sub-states are created by updating y to each of the two atomic sub-
states and assigning random values to y. Note that within each ‘leg’ of the distributive
update, there is no dependence relation between x and y. However, by collecting an
intermediate output from each leg of the update, a set of global output info-states can
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Figure 9 Introducing variable dependence with help of a distributive operator

be formed and variable dependence between x and y can be found in some of these global
output states. For example H2 and H3 in this case.31

For concreteness, as shown in (46-a) and (46-b), y stores different values in H2 when x
is restricted to different values. So, In H2, y is dependent on x (and vice versa), according
to the Definition 6 (Variable dependence).

(46) Variable dependence in H2 of Figure 9
a. H2|x=a y = {c}
b. H2|x=b y = {d}

4.1.2 Lexical relations, measurement, and logical connectives Next, we turn to lexical
relations, which only test input info-states but not modify them. Siding with DPlL but
not PCDRT, lexical relations are satisfied collectively, as instructed by the following
definitions:32

31 The possible output info-states after evaluating distributivity in Figure 9 is the cross product of the
two sets of outputs obtained from splitting the evaluation. Since there are three info-states in each
leg of the evaluation, the total number of info-states in the final output is nine. Only three sample
info-states are shown for space reasons.

32 blackIn Brasoveanu (2008)’s PCDRT, lexical relations are distributively checked. This is a conse-
quence of the dependency-introducing variable introduction in PCDRT. Not going into too much
detail, we can understand the connection between variable introduction and lexical relations in the
following way: since variable introduction makes available dependencies, collectively evaluating
lexical relations amounts to not using those dependencies. As a result, the dependencies brought
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Definition 8. (Lexical relations).

(47) G�R xn, ..., x1�H = T iff G = H &
〈⊕

G(x1), ...,
⊕

G(xn)
〉
∈ I(R)

(48) G�x=⊕a�H = T iff G = H &
⊕

G x = a, where x is a variable and a an individual.

The summation operator in the above definitions are used to bring a set of individuals (i.e.,
a discourse plurality) to a sum individual (i.e., a referential plurality) when checking for
lexical relations. The definition of this operation is given in Definition 9. In more detail,
(47) says that a sequence of n variables satisfies the lexical relation R if and only if the
n-tuple arising from collecting all the values of each variable in the sequence belongs in
the denotation of R. (48) is a special lexical relation that holds between a variable and a
constant when the collective value assigned to the variable by a set of assignment functions
is the same as the value the individual in the model. This piece of notation is used when a
variable is set to a fixed value, such as a proper name.

Definition 9. (Discourse-level summation).⊕
G u = ⊕{g u g ∈ G}

Measurement is a special form of lexical relations. For this reason, just like lexical
relations, measurement is also collectively evaluated. In particular, it is done by collapsing
all evaluation-level pluralities into a domain-level plurality and applying a measure function
to it.33 The measure function comes with a parameterized dimension (such as height or
volume), which is omitted when irrelevant.34 The definition for (generalized) measurement
is given in (49). Cardinality measurement is taken to be a special form of measurement, one
that requires the object being measured to have atomic parts, as ref lected by (50).

Definition 10. (Measurement).

(49) G�μdimension x = d�H = T iff G = H & μdimension(
⊕

H x) = d

(50) G�μcard x = d�H = T iff G = H & |{y | y ≤ ⊕
H(x) & y is an atom}| = d

Finally, logical connectives are interpreted in accordance to DPL. The only logical connec-
tive used in this paper is dynamic conjunction. It is defined as follows.

about by variable introduction are wasted. To effective use dependencies arising from variable
introduction, a lexical relation should be distributively checked.

33 I’m using the same symbol to stand for an object language measure function and a meta-language
measure function here. The measure function can be decomposed into two parts: a function
that relates entities to degrees and a function that relates degrees to numbers (Lønning, 1987;
Champollion, 2017). For example, suppose John weights 68 kilograms. The measure function uweight
maps John to a degree, and then the unit function kilogram maps the degree to the number 68.

34 The dimension parameter on a measure function determines which attribute of an object is being
measured. For example, μheight(john) measures John’s height while μweight(john) measures John’s
weight. The dimension parameter is usually taken to be contextually determined (see Schwarzschild,
2006; Wellwood, 2015).
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Definition 11. (Dynamic conjunction).
G�φ ∧ ψ�H = T iff there is K.G�φ�K = T & K�ψ�H = T

As standardly assumed, conjunction is both internally and externally dynamic. Since
it is internally dynamic, if variables are introduced in the first conjunct, their values and
dependencies are available for the interpretation of the second conjunct (though not vice
versa). Since it is externally dynamic, values and dependencies associated with variables
introduced in both conjuncts are available outside the scope of conjunction.

4.2 Monotonicity constraint
Recall that in section 3, I have sketched the main proposal of this paper: binominal each
introduces a monotonic measurement constraint. The constraint checks the the monotonic
property of a measure function relative to the dependency established by distributive
quantification. The definition, originally given in (27), is repeated in (51) below.

(51) Monotonic measurement in association with distributivity (with f ) A measure
function μ is monotonic relative to a dependency f iff both of the following conditions
hold:
a. Non-constant mapping

There are distinct b, b′ ∈ Dom f . μ(f b) �= μ(f b′)
b. Non-decreasing mapping

For all a, a′ ∈ Dom f . a ≤ a′ → μ(fa) � μ(f a′), and

The function f maps values stored in the distributivity key to corresponding values stored
in the host. Since DPlL is chosen to couch the monotonicity constraint because it represents
dependencies among variables, it is natural that we can find a correlate for f in DPlL.
The natural correlate of f in DPlL is an info-state storing the values contributed by the
Key (i.e., Dom(f )) and the values contributed by the host (i.e., Ran(f )). Since distributive
quantification is dynamic, not only can we retrieve values associated with the Key and the
host of binominal each, we can also make reference to the dependency between the Key and
the host. More importantly, since an info-state is a plural entity, i.e., a set of assignments, it
has a natural mereological structure so we can easily talk about the mereological structure
of a dependency, which is crucial for checking the monotonicity constraint.

Given this background, we can now translate the monotonicity constraint in (51) as a
form of test in DPlL, as done below:

Definition 12. (Monotonic measurement in association with distributivity (DPlL)).

(52) G�dmx,y μ�H = T iff
a. H = G
b. There are distinct B, B′ ⊆ G(x). μ

(⊕
G|x∈B y

)
�= μ

( ⊕
G|x∈B′ y

)
c. For all A, A′ ⊆ G x. A ⊆ A′ → μ

(⊕
G|x∈A y

)
� μ

(⊕
G|x∈A′ y

)

Let me link the various pieces in Definition 12 to the monotonicity constraint in (51).
The monotonicity condition is referred to as ‘dm’ (with d a mnemonic for distributivity and
m a mnemonic for monotonicity and measurement.) The measure function in Definition 12
corresponds to the same measure function in (51). As will be illustrated in the next
subsection, it is contributed by a counting quantifier or a measure phrase. f in (51) is
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essentially G in Definition 12 as restricted to two x and y: x stores the values associated
with the Key, i.e., Dom(f ) and y stores values associated with the host, i.e., Ran(f ).

To say that dm bears anaphoric indices amounts to attributing anaphoricity to binominal
each. It is not a novel assumption, as there is a longstanding tradition in granting binominal
each an anaphoric component. The tradition started in the early work of Burzio (1986) and
Safir & Stowell (1988) and was later adopted in Dotlačil (2012) and Kuhn (2017).

To check whether a measure function satisfies dm, we need to access the values stored in
the variable the measure function applies to. Definition 12 says that the measure function
μ is monotonic on the dependency between x and y iff

• (52-a): Checking dm does not change the info-state in any way (i.e., it’s a test).
• (52-b): In the input info-state, there are at least two sub-parts storing different x’s

values that are also associated with different measurements of y’s values.
• (52-c): Measuring y’s values in an info-state storing less x’s values does not yield a

bigger number (or degree) than measuring y’s values in an info-state storing more x’s
values.

Note that x and y may happen to be the same variable, as will be argued to be the case with
predicative measure phrases like two pounds, which describe the measurement of entities
introduced outside of the measure phrase. When this is the case, a special version of the
monotonicity constraint, i.e., dmx,x, is used:

(53) G�dmx,x μ�H = T iff
a. H = G
b. There are distinct B, B′ ⊆ G(x). μ

(⊕
G|x∈B x

)
�= μ

( ⊕
G|x∈B′ x

)
c. For all A, A′ ⊆ G x. A ⊆ A′ → μ

(⊕
G|x∈A x

)
� μ

(⊕
G|x∈A′ x

)
In addition, I propose that the monotonicity constraint in (53) is introduced as an output
context constraint in the sense of Farkas (2002b) and Lauer (2009, 2012). In particular,
(53) is treated as a constraint that is checked after the at-issue content has been established.
If the at-issue content cannot pass the test, then the truth condition denoted by the sentence
is not defined.35 As a result, the sentence is undefined, rather than false. This is to model
the fact that sentences with binominal each that fail dm (for various reasons) are judged
unacceptable and not false, as illustrated below:

(54) a. *The drinks are 60 degrees (Fahrenheit) each.
b. *The boys read some books each.
c. *The boys read one book each, namely Emma.

An output constraint is interpreted following Definition 13. The special connective �
indicates that the constraint ψ applies after evaluating the at-issue content φ.

35 As summarized in Kuhn (2021), there are a few types of ‘postsuppositional’ meanings (implemented
in various ways), i.e., meanings introduced by expressions within a sentence (or a clause) but are
delayed in evaluation until the sentence has been interpreted to give rise to an output context.
The particular type of meaning taken up here belongs to what he calls ‘blind post-suppositions’,
i.e., delayed meanings that must be satisfied within a local clause and returns ungrammaticality
otherwise.
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Table 2 Constraint satisfaction

ψ/φ T F

T T F

F � �

Definition 13. (Output context constraint).
G�φ � ψ�H = G�φ�H if H�ψ�H = T; otherwise, undefined.36

This definition says: the at-issue content given by φ, which represents the distributive
component, has a truth value only if the output context of φ, which represents the mono-
tonicity constraint, admits ψ . A constraint behaves in a similar way to a presupposition
in being a definedness constraint, but it differs from a presupposition as the definedness
condition is imposed on the output context, instead of the input context.

The determination of the truth condition of the entire formula φ � ψ is given in Table 2
for concreteness. The top header φ represents the distributivity component and the side
header ψ represents the monotonicity component. Let us first consider the predicted truth
values for the entire sentence when the distributive component φ is true. According to the
table, the entire sentence with an output context constraint is judged true if the constraint is
satisfied but undefined if the constraint is not satisfied. This is in line with the data reported
earlier in section 2—violation of the requirements subsumed by the monotonicity constraint
leads to ungrammaticality (modeled as infelicity) but not falsity.

The situation is less ideal when the distributive component happens to be false. On
one hand, the formulation correctly predicts that falsity of the distributive component also
leads to falsity of the entire sentence even if the monotonicity constraint is satisfied.37

However, on the other hand, it incorrectly predicts that a sentence is undefined when both
the distributive component and the monotonicity constraint are false. This is problematic as
most speakers simply judge sentences with binominal each as false as long as the distributive
component is false (see Table 5 in section 6). In other words, they no longer care about the
satisfaction of the monotonicity constraint. This issue is taken up in more detail in section 6.

4.3 Composition
Although the original DPlL does not have sub-sentential compositionality, just like DPL,
Nouwen (2003) and Brasoveanu (2008) have shown that it is possible to build sub-
sentential compositionality into DPlL, following Muskens (1996)’s compositional treatment

36 As pointed out by a reviewer, this undefinedness is stated for a particular input-output pair. A
sentence may be undefined for a particular input-output pair but defined for another pair. Given a
particular input info-state, a sentence is undefined iff evaluating the sentence returns no defined
output info-state.

37 The monotonicity constraint can be accidentally satisfied in an info-state with prior values stored in
the relevant variables, a design feature inherited from DPL and DPlL.
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Table 3 Type abbreviations

Name Type Abbr. Variables Examples

Info-state s → t – G, H

proposition (s → t) → ((s → t) → t) t φ, ψ John left.

predicate e → ((s → t) → ((s → t) → t)) e → t P, P′ pretty, book

quantifier (e → t) → t Q Q every girl

measure functions e → d m m, m′ μweight

of Discourse Representation Theory (Kamp, 1981). In this section, I f lesh out the
compositionality assumptions adopted in the present framework.

To begin with, DPlL is treated as a typed logic. It includes basic types as listed in (55)
and derived types τ → τ for functions.

(55) τ ::= e | t | s | d | τ → τ

a. e: entities
b. t: truth values
c. s: (variable) assignments
d. d: degrees

To keep type description reader-friendly, the following type abbreviations are used:
I propose that all noun phrases hosting binominal each are measure phrases of some

form. However, depending on whether a measure phrase occurs in an argument position, as
in (56-a) and (56-b), or a predicate position, as in (56-c), it has slightly different types.

(56) a. John bought two apples.
b. John bought three pounds of chicken.
c. John is six feet (tall).

In an argument position, a measure phrase is a dynamic generalized quantifier (GQ), of
type (e → t) → t. In a predicate position, a measure phrase is simply a predicate, of type
e → t. However, unlike ordinary dynamic GQs and predicates, measure phrases have two
additional components: a measure function and a measure head. The internal structures of
different measure phrases are given in Figure 10.

Argumental measure phrases, analyzed as GQs, are shown in Figure 10a and Figure 10b.
If the measure phrase is a cardinal GQ, the measure head is a silent determiner akin to the
silent many in Hackl (2000). The measure head takes a degree (in the form of a number), a
property and a measure function and returns a GQ. This measure head is defined in (57-a).
If the measure phrase is a non-cardinal GQ, the measure head is assumed to be provided by
a measure unit like pound(s), which takes a degree, a property, and a measure function and
returns a GQ, as defined in (57-b).

(57) a. manyy:= λnλPλmλP′.∃y ∧ P y ∧ P′ y ∧ m y = n
b. poundy:= λnλPλmλP′.∃y ∧ P y ∧ P′ y ∧ m y = n lbs

D
ow

nloaded from
 https://academ

ic.oup.com
/jos/article/39/1/159/6517775 by guest on 30 January 2023



The Mereological Structure of Distributivity 189

Figure 10 Argumental and predicative measure phrases

The cardinality measure head many selects (with help of agreement or some other means) a
cardinality measure function μcard (type e → n), while a non-cardinality measure head like
pound selects a non-cardinality measure function, like μweight (type e → d). A measure
function is assumed to be syntactically present and further away from a measure head,
unlike that in Hackl (2000), which builds the measure function into the meaning of a
measure head.

If a measure phrase is predicative and has a nominal predicate (e.g., this is two pounds
of chicken), then the measure head takes the same ingredients, but returns a predicate rather
than a GQ. The corresponding definitions of the predicative measure heads are given in (58-
a) and (59-a). Lastly, sometimes a predicative measure phrase may not contain a common
noun at all, as in this is two pounds. I assume that a measure head may optionally not
take a nominal predicate as one of its arguments, giving rise to a simple, noun-less measure
phrase. Sample definitions of the measure heads are given in (58-b) and (59-b).

(58) a. manyNP:= λnλPλmλu.P u ∧ m u = n
b. manyMP:= λnλmλu.m u = n

(59) a. poundNP:= λnλPλmλu.P u ∧ m u = n lbs
b. poundMP:= λnλmλu.m u = n lbs
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Figure 11 Binominal each gives rise to a higher-order meaning

With the assumptions about the internal structure of a measure phrase fleshed out, we are
now ready to add binominal each to the structure.38

I assume that binominal each attaches to a measure function and shifts the whole
measure phrase to a higher-order meaning. Concretely, in a cardinal GQ, binominal each
maps the GQ into a higher-order GQ by turning the measure function from an argument
status (it is sought by a m → Q function) to a function status (it now seeks a m → Q
function), as shown in Figure 11a. Similarly, in a measure phrase predicate, each attaches
to the measure function and turns the whole measure phrase predicate into a higher order
predicate, as shown in Figure 11b.

38 As pointed out by a reviewer, not all argumental measure phrases contain a common noun other
than the measurement unit. For example, two miles is an optional argument of the verb in (i) without
a head noun. The two proposed lexical entries for binominal each cannot handle this use of measure
phrases. The ‘two-index’ each for argumental measure phrases cannot be used because there is
no individual d-ref introduced by the measure phrase that can be checked for monotonicity. The
‘same-index’ each for predicative measure phrases cannot be used because the measure function
introduced by the measure phrase measures distance (of the walking events) but not the distance of
the distributive key (i.e., the girls).

(i) The girls walked two miles each.

An extension of the present framework has to be made to accommodate data like (i). A more
straightforward extension involves the use of event d-refs (see Bittner, 2014; Henderson, 2014), which
can be used for in places of individual variables. In a less straightforward route, it may be assumed
that measure phrases introduce degree d-refs that can be used for checking monotonicity, as done
in Law (2019). The implications of incorporating degree d-refs into a plural logic framework remains
to be precisified but it is worth noting that degree d-refs bear striking resemblance to the notion of
degree pluralities in Dotlačil & Nouwen (2016) as both are basically collections of degrees.
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Since binominal each can be hosted by both argumental and predicative measure
phrases, and predicative measure phrases with or without a common noun component,
we need to allow it to be type-polymorphic. I offer a schema for defining binominal each
in (60-a), where f may range over any type α. In addition, when a measure phrase does not
introduce any discourse variables, as in the case of a predicative measure phrase, each bears
two instances of the the same anaphoric index, i.e., the anaphoric index for the variable
storing the individuals measured by the measure function μdim. This is shown in (60-b).39

(60) a. eachx,y := λmλfλc.c(f m) � dmx,y m m → (m → α) → ((α → t) → t)
b. eachx,x := λmλfλc.c(f m) � dmx,x m m → (m → α) → ((α → t) → t)

As already can be seen in (60-a) and (60-b), after turning a GQ (or predicate) into a
higher-order GQ (or a higher-order predicate), binominal each is capable of introducing
a monotonic measurement constraint in a place different from where the original GQ (or
predicate) takes scope. For example, in (60-a), the ‘lower-order’ GQ f m takes scope inside
c, but the monotonic measurement constraint is introduced outside c.

To see a concrete example, after composing with all the ingredients inside an argumental
cardinal measure phrase, a host with binominal each essentially denotes a higher-order
dynamic GQ, as shown in (61).40

(61) two manyy movies μcard eachx,y =
λc.c

(
λP.∃y ∧ movie y ∧ μcard y = 2 ∧ P y

)
� dmx,y μcard

This higher-order dynamic GQ looks for a function from GQ to truth values, puts the
GQ (i.e., two movies) back in the scope of this function and introduces a monotonic
measurement constraint outside the scope of this function (see Cresti, 1995, and Swart,
2000, for higher-order quantifiers and Charlow, 2020, for their dynamic variants; Kuhn,
2021, is another study using higher-order dynamic GQs based on Charlow, 2021). Figure 12
shows the Logical Form of a sentence with a higher-order dynamic GQ (the numerical
indices induce a λ-abstraction rule, in the manner of Heim & Kratzer, 1998). This is
essentially a ‘split scope’ mechanism that allows two movies to scope both inside and outside
of distributivity. Scoping it inside distributivity gives us the correct narrow scope reading
of two movies and scoping it outside of distributivity allows the monotonicity constraint to
‘associate’ with the internal structure of distributivity dependency.

Assuming the lexical entries in Table 4 for the definite NP the girls, the verb saw and the
covert distributive operator, we obtain the final meaning of the LF, as shown in (62).

39 If we had taken binominal each to encode a distributive operator as part of its lexical meaning, the
relevant lexical entry would need to be revised as follows:

(i) eachx,y := λmλf λc.δx (c(f m)) � dmx,y m m → (m → α) → ((α → t) → t)

To complement this entry, the plural subject has to take scope over binominal each and its host.
40 All lexical predicates are cumulatively closed by default, following the assumptions in Landman

(2000), Kratzer (2007), Brasoveanu (2013) and Champollion (2017). For example, if x ∈ girl and y ∈ girl,
then x ⊕ y ∈ girl; and if 〈x, y〉 ∈ saw and 〈x ′y ′〉 ∈ saw, then 〈x ⊕ y, x ′ ⊕ y ′〉 ∈ saw. For this reason,
I do not mark a predicate with “*” to indicate cumulative closure.
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Figure 12 Scope taking of a higher order dynamic GQ

Table 4 Definite NPs, verbs and the distributive operator

Expression Denotation Type

the girlsx λP.maxx(girl x) ∧ P(x) Q
saw λuλu′.saw u u′ e → e → t
dist λPλu.δu(atom u ∧ P u) (e → t) → (e → t)

(62) twoy movies eachx,y

(
λQ. the girlsx dist

(
λu′.Q

(
λu. saw u u′))

︸ ︷︷ ︸
β

)

︸ ︷︷ ︸
α

a. β = λQ. maxx
(
girls x

)
∧ δx

(
atom x ∧ Q

(
λu. saw u x

))

b. α = maxx
(
girls x

)
∧ δx

(
atom x ∧ ∃y ∧ movie y ∧
μcard y = 2 ∧ saw y x

)
� dmx,y μcard

As shown in (62), the split scope mechanism allows two movies to scope inside the
distributive operator but dm to scope outside the distributive operator. The ‘association-
with-distributivity’ effect is clearly seen in the dm test in (62-b). The test bears an anaphoric
index x, which is the same index borne by the distributive operator. This anaphoric index
stores values based on which an info-state is split up into sub-states to check a formula
distributively.

To test for dm, we first assemble the distributivity update. Assuming a scenario in which
three girls each saw two different movies, the output of the distributivity update can be
visualized in Figure 13.
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Figure 13 Distributivity update

The monotonic measurement constraint, spelled out in (63), is evaluated against the output
of the distributivity update. It first requires that the info-state be split up into sub-states
each storing one or more values in the variable x. With three values in x, seven such sub-
states can be found (excluding the empty sub-state, which stores no value in x). Then, it
compares these sub-states, requiring that if a sub-state whose x-value is a proper subset of
the x-value of another sub-state, then measuring y’s cardinality in the former sub-state does
not yield a bigger number than measuring y in the latter sub-state.

(63) G�dmx,y μcard�H = T iff
a. H = G and
b. ∃B, B′ ⊆ G x. μcard

( ⊕
G|x∈B y

)
�= μcard

( ⊕
G|x∈B′ y

)
c. ∀A, A′ ⊆ G x. A ⊆ A′ → μcard

( ⊕
G|x∈A y

)
≤ μcard

( ⊕
G|x∈A′ y

)
For concreteness, let’s consider two info-states, shown in Figure 14, that verify dm. In info-
state G, three girls each watched a different set of two movies. The cardinality of y (i.e.,
the movies) in each x sub-state is provided under the matrix. Since the cardinality of y
never decreases in a bigger sub-state containing more x-values, non-decreasing mapping is
satisfied. In addition, the cardinality of y is not constant in all the x sub-states, non-constant
mapping is satisfied. As a result, dm is satisfied by Info-State G. Another info-state that also
verifies dm is Info-State G′, which has two girls seeing two identical movies but a third girl
seeing two different movies. Again, this info-state satisfies both non-decreasing mapping
and non-constant mapping, hence also dm.

Of course, not all distributivity updates satisfy dm. If the values stored in y do not vary
across the distributivity dependency, as in Info-State G′′. in Figure 15, dm is violated. Recall
that since dm is modeled as a constraint, the predicted judgment for the corresponding
sentence containing a binominal each is infelicitous, or unacceptable, rather than false. This
is how dm captures the variation inference triggered by binominal each.

When the measure phrase is predicative, as in (64-a) and (64-b), the measure phrase does
not introduce a discourse variable. dm is checked by just using a single discourse variable,
i.e., the variable storing the values for the distributivity key (the relevant angles for (64-a)
and the relevant coffees for (64-b)).
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Figure 14 Info-states that verify the girls saw two movies each

Figure 15 An info-state that fails to verify the girls saw two movies each

(64) a. The angles are 60 degrees each.
b. *The coffees are 60 degrees each.

For concreteness, the interpretation of these two sentences are given below:41

(65) a. maxx
(
angles x

)
∧ δx

(
atom x ∧ μangle x = 60◦

)
� dmx,x μangle

b. maxx
(
coffees x

)
∧ δx

(
atom x ∧ μtemp x = 60F

)
� dmx,x μtemp

41 A reviewer correctly pointed out that the monotonicity constraint contributed by the ‘same-index
each’ does not require a distributive evaluation of a predicative measure phrase. To take (65-a) as an
example, a collective evaluation of the predicative measure phrase yields the following interpretation
(the distributive operator and the atomicity requirement are both removed):

(i) maxx
(

angles x
)

∧ (
μangle x = 60◦)

� dmx,x μangle

The reader can verify that since there is no novel d-ref y storing the measurement of each angle, the
monotonicity requirement is easily satisfied assuming angle measurement is monotonic, regardless
of whether each angle angle measurement is 60◦. As mentioned in footnote 16, this constitutes an
argument for attributing distributivity to binominal each.
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Figure 16 Monotonic measurement (left) vs. non-monotonic measurement (right)

The corresponding monotonic measurement constraints have a similar form, as shown in
(66), differing only with respect to whether the values stored in x are angles or coffees, and
whether the measure function measures angle degrees or temperature.

(66) G�dmx μangle/temp�H = T iff
a. H = G and
b. ∃B, B′ ⊆ G x. μangle/temp

(⊕
G|x∈B x

)
�= μangle/temp

(⊕
G|x∈B′ x

)
c. ∀A, A′ ⊆ G x. A ⊆ A′ → μangle/temp

(⊕
G|x∈A x

)
≤ μangle/temp

(⊕
G|x∈A′ x

)
As shown in the info-states in Figure 16, it is possible to satisfy dm if the measure function
is monotonic, as in the case of μangle (Info-State H), but not if the measure function is
non-monotonic, as in the case of μtemp (Info-State H′).42

As already pointed out in section 3, the monotonicity constraint cannot be satisfied with a
non-monotonic measure function even if the measure function associates different degrees
for different values in the Key, as allowed in (67).

(67) *The coffees are more than 60 degrees each.

For concreteness, suppose interpreting (67) gives rise to the output info-state H′′ in
Figure 17. Since the three coffees all have different temperatures, H′′ satisfies the non-
constant mapping clause of the monotonic measurement constraint. However, H′′ fails the
non-decreasing mapping clause, as it is not true that the sum of two coffees is always of a
higher temperature than the individual coffees that make up the sum.

4.4 Interim summary
I have demonstrated how to translate dm as an output constraint in DPlL⊕, a dynamic
plural logic sharing properties with van den Berg (1996)’s DPlL and Brasoveanu (2008)’s
PCDRT. The use of plural logic enables us to model distributivity-induced dependency as
a discourse plurality, and marrying plural logic with a dynamic logic allows us to record

42 When the measure function is non-monotonic, there is no way to satisfy dm. However, when the
measure function is monotonic, whether or not dm is satisfied is context-dependent, as it matters
what values are associated with the variable being measured, i.e., the host variable.
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Figure 17 Non-monotonic measurement giving rise to a non-constant mapping but not a non-
decreasing mapping

this dependency and its internal structure. The anaphoric component on binominal each
retrieves this dependency, and the monotonic measurement constraint makes crucial use of
the internal structure of this dependency.

5 COMPARISONS WITH AND CONNECTIONS TO PREVIOUS STUDIES

In this section, I compare the present approach to binominal each with previous studies on
this marker.

5.1 Studies attributing the variation requirement to variable dependence
There are a few extant studies on dependent indefinites and markers like binominal each
couched in PCDRT, a variant of DPlL (e.g., Henderson, 2014; Champollion, 2015; Kuhn,
2017). Although there are some nontrivial differences between DPlL and PCDRT, they share
the overall dynamic framework and the plural architecture. For this reason, the present
account can be more or less directly compared with the accounts developed in these studies.

To begin with, Henderson (2014) investigates dependent indefinites in Kaqchikel
and concludes that their variation requirement should be analyzed as imposing a post-
suppositional plurality condition (known as evaluation-level plurality) on the functional
dependency arising from distributive quantification. On the basis that binominal each
also exhibits some form of variation requirement, Champollion (2015) and Kuhn (2017)
take binominal each to be a dependent indefinite marker and extend Henderson (2014)’s
analysis of dependent indefinites to binominal each constructions. Although Henderson
(2014)’s analysis is modified in Kuhn (2017), the core of the analysis, namely, that
dependent indefinites contribute an evaluation-level plurality condition, is shared by both
Champollion (2015) and Kuhn (2017). Since the evaluation-level plurality condition was
devised to handle the variation requirement, the comparison focuses on its similarities to
and differences from the monotonicity constraint.

Let me introduce the evaluation-level plurality condition with a concrete sentence like
(68). This sentence can largely be translated into DPlL⊕ as in (69). The only bit that is not
yet defined in our framework is the evaluation-level plurality condition in the last conjunct.
Let me define it below, using Henderson’s original definition.
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(68) The students hugged one dog each.

(69) maxx(student x) ∧ δx(∃y ∧ μcard y = 1 ∧ dog y ∧ hug y x) ∧ y > 1

Definition 14. (Evaluation-level plurality (Henderson, 2014)).
G�y > 1�H = T iff G = H and |{h y | h ∈ H}| > 1

h in Definition 14 is a single assignment, so h(y) yields a single value (which can be in
the form of a plural individual). Since an info-state has a set of h-assignments (h1, h2, ...hn),
we can collect a set of h(y) values ({h1 y, h2 y, ...hn y}). An evaluational-level cardinality
can be computed based on how many members are in this set. If all the assignments assign
to y the same value, then there is only one member in the set. Such a set does not satisfy
evaluation-level plurality. However, if at least two assignments assign different values to y,
evaluation-level plurality is satisfied.

Since the evaluation-level plurality condition is evaluated after the distributivity quan-
tification, each h that associates y with a value also associates x with a value, from the
distributivity key. For this reason, requiring y to exhibit evaluation-level plurality following
a distributive quantification has the same effect as requiring y to depend on x. To see this,
consider the definition of variable dependence repeated from Definition 6.

Definition 6 (variable dependence)
In an info-state G, a variable y is dependent on a variable x if and only if there are a, b such
that a �= b and G|x=a y �= G|x=b y. (see also Nouwen, 2003:84)

If we set the variable x to store all the relevant values in the Key and y to store the values
introduced by the host. The requirement that y is associated with different values for at least
two distinct values in x is the same as saying that y is associated with at least two values
at the evaluation level. So, we can safely conclude that evaluation-level plurality and value
dependence are one and the same requirement.43

As already pointed out earlier, variable dependence is a prerequisite for the monotonicity
constraint when counting quantifiers are concerned: a pair of (possibly identical) variables
can satisfy the monotonicity constraint only if they exhibit variable dependence. For this
reason, the monotonicity constraint is straightly stronger than variable dependence (or
evaluation-level plurality): Variable dependence only handles the variation requirement
while the monotonicity constraint also handles the counting quantifier requirement and
the monotonic measurement requirement.

In addition to the primary difference between variable dependence and the monotonicity
constraint, there are a few less pronounced differences between the present study and its
predecessors. First, there is a difference in the kind of meaning status given to the evaluation-
level plurality requirement and the monotonic measurement requirement. In Henderson
(2014) and Champollion (2015), evaluation-level plurality is analyzed as a delayed at-

43 Evaluation-level plurality is notationally more economical as it only uses one variable, i.e., the
variable introduced by a distributive numeral. The variable storing values contributed by the Key
is not used explicitly. However, it is used implicitly, as y is in the distributive scope of x.
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issue test.44 However, in both Kuhn (2017) and the present study, the corresponding
component is analyzed as a not-at-issue meaning. The motivation for modeling it as a not-
at-issue meaning is empirically driven—failure to satisfy the variation component leads to
unacceptability rather than falsity. Although Kuhn (2017) calls his evaluation-level plurality
constraint a ‘presupposition’ while I call the monotonicity constraint here an ‘output
constraint’, the two essentially amount to the same thing. Kuhn (2017) calls the constraint a
presupposition because it is placed on the input context for evaluating the constraint, which
is precisely the output context of evaluating distributive quantification. I thank a reviewer
for alerting me to this point.

Lastly, this study has adopted a higher order meaning approach to model delayed
evaluation, following Charlow (2021) (to appear). By contrast, Henderson (2014) follows
Brasoveanu (2013) and uses a post-supposition instead and the assumption carries over
to Champollion (2015). Kuhn (2017) uses ordinary scope-taking without higher order
meaning to model delayed evaluation. The merits and shortcomings of these strategies are
discussed in the next subsection.

5.2 Split scope via other mechanisms
As brief ly mentioned earlier, two other mechanisms have been explored to model split
scope, namely, the use of post-suppositions and the use of scope-taking without higher-
order meaning. In this subsection, I review these alternatives and why I opt for higher-order
meaning.

Henderson (2014) is the first to use post-suppositions to model the variation requirement
of dependent indefinites (see also Champollion, 2015). However, Kuhn (2017) points
out that post-suppositions, without further assumptions, predict a lack of locality in the
licensing of dependent indefinites. The prediction is not borne out, as binominal each and
its distributivity key cannot be separated by a scope island. Consider the following examples
(judgments due to the credited sources):

(70) *The boys said Mary captured two snakes each. (Safir & Stowell, 1988:(48))

(71) a. Jones proved the prisoners guilty with one accusation each.
b. Bob made/let Sam and Tom leave on two occasions each.

(Safir & Stowell, 1988:(36a-b))

(72) ??The linguists thought two theories each were refuted. (Simon Charlow, p.c.)

(73) The linguists want two theories each to be refuted. (Simon Charlow, p.c.)

In (70) and (72), binominal each and its hosts are inside tensed clauses, which have been
independently identified as a scope island for quantifiers (e.g., May, 1985; Beghelli, 1995;
Barker, 2002; Charlow, 2014). In (71) and (73), the dependent indefinites are inside ECM

44 This is not entirely correct as Henderson (2014) and Champollion (2015) have not made explicit what
would happen when the condition fails.
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clauses, which have been observed not to be a scope island for quantifiers (e.g., May, 1985).
The fact that dependent indefinites introduced by binominal each are subject to the same
locality conditions governing quantifier scope suggests that a locality-sensitive mechanism
should be used for licensing dependent indefinites.

To model the island sensitivity of dependent indefinites, Kuhn (2017) suggests a scope-
taking analysis, in which a noun phrase like two theories each has to undergo quantifier-
raising (QR) to take wide scope.

A drawback of Kuhn (2017)’s QR analysis (discussed in Kuhn, 2017, and credited to
an anonymous reviewer), is that it fails to account for the grammaticality of dependent
indefinites with a bound pronoun inside them.

(74) Minden rendezö benevezte két-két filmjét. every director entered two-two film-poss.
-3sg-acc ‘Everyx director entered two films of hisx (in the competition).’

In this Hungarian example, the noun phrase restriction of the distributive numeral has a
(possessor) pronominal bound by the quantifier that licenses the distributive numeral. If
the distributive numeral has to take wide scope over its licensor to be licensed, then the
pronoun is left unbound.

Based on considerations of island sensitivity and pronominal binding, Charlow (2021)
(to appear) suggests a scope-taking mechanism involving higher order meaning. Charlow
(2021)’s higher-order meaning approach has a very similar empirical coverage as the post-
supposition approach, with the exception of island sensitivity, which favors the former. In
this study, I have adopted the higher-order meaning approach for it has better empirical
coverage, although the choice is largely immaterial to the claim that binominal each makes
reference the mereological structure of a distributivity dependency.

5.3 Studies in static semantics
There is a vast literature on binominal each couched in static semantics. It is beyond the
scope of the present paper to offer a comprehensive review of previous studies on this topic.
However, it is worth pointing out the major developments that have paved way for the ideas
used in the present paper.

An early study on binominal each is Link (1987), which set the stage for treating
binominal each as a distributive operator. This treatment is adopted in many subsequent
studies, including Zimmermann (2002), Dotlačil (2012), Champollion (2010, 2017).
However, these studies place their primary focus on the distributivity component and do
not really recognize the variation component. As such, they differ quite drastically from the
present paper, which takes the variation component as its primary concern.

There are a few studies that take up the variation component. For example, Safir &
Stowell (1988) recognize a strong form of the variation inference, and conceive binominal
each as a one-to-one distribution function, establishing a one-to-one correspondence
between elements in the distributivity key to elements in the distributivity share. This strong
form of variation is later criticized by Moltmann (1991) and Zimmermann (2002). Cable
(2014) extends the semantics established for dependent indefinites in Tlingit to binominal
each, arguing that each is both a distributive marker and bears a variation inference. Despite
recognizing the variation component, these studies either fail to account for the counting
quantifier requirement and/or the monotonic measurement requirement.

Despite these differences, studies in the static tradition have offered great insights to the
study of binominal each in the present work. For one thing, it has been a longstanding puzzle
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how binominal each access the distributivity key. The received wisdom is that there are null
pronouns in the NP that hosts binominal each that help connect it with the distributivity
key, as suggested in Safir & Stowell (1988). This idea is further refined in Zimmermann
(2002), with the pronoun treated as an anaphoric index directly borne by binominal each.
The strategy is then imported into a dynamic framework by Dotlačil (2012) and adopted in
Kuhn (2017) and the present work.45

Many studies also share the intuition that each is a marker of quantificational
dependence. Choe (1987) and Milačić et al. (2015) are notable examples. This intuition
is also relevant in the present study, albeit in a slightly different manner. In previous studies,
the core contribution of binominal each is to signal quantificational dependence. However,
in the present study, the core contribution is a variation component formalized in terms
of a monotonicity constraint. A separate constraint is needed because quantificational
dependence is a necessary but not sufficient condition for using binominal each.

The present study is not the first to observe that monotonicity plays a role in
conditioning the distribution binominal each. Based on essentially the same range of data
reported in section 2, Zhang (2013) sketches an analysis that treats binominal each as an
operator expressing a ratio over two measurements, which is similar to the contribution of
the word average as suggested in Kennedy & Stanley (2009). The monotonicity requirement
is taken to be a presupposition associated with the measurement constructions (see also
Schwarzschild, 2006; Wellwood, 2015).

As a final note, the monotonicity constraint is related to the idea of ‘structure-preserving
binding’, developed in Jackendoff (1996) to deal with a host of phenomena ranging from
telicity to quantification. Jackendoff (1996) suggests to broaden the notion of binding from
a relation between two identical variables to a relation between two variables that are linked
in some way. Most importantly, he argues that it is fruitful to study the links in terms of
structure-preserving maps. He implements structure-preserving binding in the framework
of Conceptual Semantics, which differs from the framework used in this work substantially.
However, the core of the idea of structure-preserving binding resonates with the notion of
the monotonicity constraints developed here.

6 REMARK ON OUTPUT CONTEXT CONSTRAINTS

6.1 Truth-value gap
In section 4.3, I suggest modeling the monotonic measurement constraint of binominal
each as an output context constraint, following Farkas (2002b), Lauer (2012) and Kuhn
(2017). This is motivated by the presence of a truth value gap in the meaning of sentences
with binominal each. In particular, when the distributivity component is judged true, the
monotonicity component cannot typically lead to the falsity of the entire sentence with
binominal each. As an example, the entire sentence in (75) is either judged as true (when
the constraint is satisfied, as in Figure 18a) or unacceptable (when the constraint is not
satisfied, as in Figure 18b) (see also Kuhn, 2017).

(75) The girls saw one movie each.

45 The anaphoric index provided by the distributivity key is not used in Henderson (2014), as his formu-
lation of the evaluation-level plurality condition does not need direct reference to the distributivity
key.
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Figure 18 The judgment for The girls saw one movie each when distributivity is satisfied

Figure 19 The judgment for The girls saw one movie each when distributivity is not satisfied

This kind of truth value gap is characteristic of input context constraints, i.e., presup-
positions, and have been attributed to output context constraints (Farkas, 2002b; Lauer,
2012; Kuhn, 2017).

A natural question that arises is what would happen if distributivity is not satisfied.
This is particularly interesting because in DPlL distributivity has to be true to establish
the dependency needed for checking the monotonicity constraint. When distributivity is
false, there is no output with dependency that can support the constraint and hence
the constraint cannot be satisfied. Since the constraint is a definedness condition, like
a presupposition (Strawson, 1950; Heim, 1983), the prediction is that the falsity of the
distributivity component would lead speakers to judge a sentence with binominal each as
unacceptable. However, this prediction is not borne out.46 As shown in the two situations
in Figure 19, a sentence with binominal each is judged false rather than unacceptable
or undefined when distributivity is not satisfied. This is regardless of whether a partial
dependency may help satisfy the constraint, as in Figure 19a, or not, as in Figure 19b.

The above judgment of a sentence containing binominal each is summarized in
Table 5. The top header and the lefthand header represent the truth values of distributive
quantification and the monotonicity constraint, respectively. The other cells between the
two headers represent the judged truth values resulting from different combinations of the
two components. � indicates undefinedness.

The discrepancy between the empirically attested truth value judgment and the theoret-
ically predicted truth condition is not unique to the present account: all accounts that take
the variation requirement to follow from some form of definedness condition suffer from
this discrepancy. Note that treating the monotonicity constraint as an at-issue component is
not a tenable remedy: although it correctly predicts that failure to satisfy distributivity leads

46 I thank a reviewer for helping to bring this issue to the forefront.
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Table 5 The judged truth values of a sentence with binominal each

ψ/φ T F

T T F

F � F

to falsity, it fails to predict the unacceptability induced by the failure of the monotonicity
constraint when distributivity is satisfied.

I do not have a solution to the discrepancy at this point. However, I would like to suggest
some possible directions in which a solution may lie. To begin with, it is possible that an
output context constraints is conditional in nature, in the sense that it is only checked when
the output context is not an empty set. There is an intuitive appeal to this move: there is
no point in checking an empty output context to ensure that it encodes a particular form
of dependency. Second, we may even step back and ask if there indeed is a discrepancy
in the first place. We are led to think that there is a discrepancy because I assimilated an
output context constraint to a familiar kind of definedness condition, i.e., a presupposition.
It is indeed true that for a presupposition, (assuming a simple picture) failure of satisfaction
typically yields undefinedness. However, there is no reason that an output context constraint
should behave in exactly the same manner as a presupposition (see also Kuhn (2021)
(to appear) for an early taxonomy of output context constraints suggesting that there is
considerable heterogeneity in how they behave). Perhaps it is normal for an output context
constraint to be only operational when the output context is nontrivial. The exact nature
of an output context constraint requires further investigation. However, regardless of what
it turns out to be, it is likely that the monotonicity constraint can be adapted to the new
understanding.

6.2 Projection
An issue closely related to the status of the monotonicity constraint is its projection
behavior. Interestingly, the projection behavior of the monotonicity constraint is quite
different from that of presuppositions. In particular, it seems that the constraint never
projects beyond any operator that scopes above distributivity. To see this, let us first
consider a classical case of presupposition projection.

(76) a. If Paula saw Matt again, she would tell him the truth.
b. Paula didn’t see Matt again.
c. Projected: Paula saw Matt at least once before.

As is well known, again is associated with a presupposition of prior occurrence and the
presupposition projects beyond the antecedent of a conditional, as in (76-a), and beyond
negation, as in (76-b) (Karttunen, 1973). However, when binominal each is embedded in
the antecedent of a conditional or inside the scope of negation, the monotonicity constraint
does not project. For example, there is no inference that the girls spotted different mistakes
in (77-a) or (77-b).47
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(77) a. If the girls spotted one mistake each, they should get a reward.
b. The girls didn’t spot one mistake each.
c. Not projected: The girls spotted different mistakes.

The discrepancy between an input context constraint (i.e., a presupposition) and an output
context constraint is not that surprising. After all, the former constrains input contexts
while the latter constrains output contexts. If the monotonicity constraint is a constraint
on output contexts brought about by a distributive update, it is in fact predicted to only
‘project’ as far as the distributive update. In other words, it does not project beyond the
scope of an operator embedding a distributive update.

7 REMARKS ON PLURALITY MEASUREMENT

For a sentence with binominal each to be well-formed, the monotonicity account makes
the prediction that it must be possible to measure the relevant singular entities and the
pluralities they form. However, measuring pluralities is not always straightforward. This
section takes up less transparent cases involving plurality measurement, discusses the
potential challenges they pose to the monotonicity account, and offer ways to handle the
challenges.48

7.1 The need for mediating events
A measure function like weight measurement (μweight) involves a monotonic mapping from
the individual domain to the measurement domain. Suppose that the measure function
involved in (78) is μduration, i.e., duration measurement. It is not immediately clear that
it is also such a monotonic mapping.

(78) The boys worked for 10 hours each.

After all, μduration does not directly measure boys. Instead, it measures the duration of some
working events with the boys as their agents. Hence, to account for the well-formedness of
(78), it is then necessary to assume that (under a distributive reading) there is some kind
of working event introduced for each boy and it is the events that are being measured for
duration, as shown in the first two conjuncts in (79). The monotonicity constraint then
requires that the number of boys and the duration of their working events are monotonic—
that is, more boys work for longer hours, as indicated by the third conjunct in (79).

(79) maxx(boy x) ∧ δx(∃e ∧ work e ∧ Ag e = x ∧ μdur e = 10hrs) ∧ dmx,e μdur

It has been argued that thematic functions that mediate individuals and events are
homomorphic, i.e., structure-preserving with respect to the summation operation (Krifka,

47 (77-b) is in fact ambiguous between two readings. In the first reading, the numeral phrase one
mistake takes scope over negation but falls in the distributive scope of the plural subject the girls.
In this reading, the monotonic measurement constraint is attested and requires that the girls did
not spot the same mistake. In the second reading, the numeral phrase takes scope below negation.
Unlike with the other reading, the monotonic measurement constraint is no longer attested in this
case. It is in this sense that the monotonic measurement constraint does not project beyond negation.

48 Many of the issues discussed in this section are credited to a reviewer of this paper.
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1992).49 This means that in a distributive reading, there is a homomorphic mapping from
a set of individuals and their pluralities to the events they participate in. As a result, the
duration of the working events increases as the number of boys involved increases, satisfying
monotonicity.50

7.2 ‘Proxy’ measurement
Although duration measurement is monotonic, the closely related measurement of age does
not seem to be monotonic. This can be seen by comparing the more well-formed (78) and
the degraded (80).

(80) ?The children are 10 years old each.

The status of (80) can be explained if age measurement is non-monotonic relative to
individuals: Two 11-year-olds are not old enough to buy alcohol if the minimum age
requirement for that is 21.51

Although the age measurement in (80) is non-monotonic relative to individuals, it
does not mean that the measure phrase ‘10 years old’ has no chance of associating
with any monotonic measure function. Previous studies have shown that measure phrases
underdetermine measure functions (e.g., Schwarzschild, 2005; Wellwood, 2015). Notably,
Schwarzschild (2005) shows that measure phrases have nonce uses and can be associated
with non-canonical measure functions. For example, five prisoners usually measures the
number of prisoners, but it can also measure their height, as in the pile was five prisoners
high (cited from Schwarzschild 2005).

In light of this background, the measure phrase in (80) may be associated with a
monotonic measurement if it can be construed as measuring another dimension that tracks
the size (or number) of individuals. Since age often determines physical bulk, it is predicted
that when the measure phrase 10 years old goes proxy for bulk measurement, as indicated
in (81), the naturalness improves.

(81) The children are ten years old each. The full bed isn’t big enough for them.

This is because bulk (measured in years lived) is homomorphic (and hence monotonic) to
the number of individuals (before certain age).

Similarly, if people can be summed up based on their life experience (or wisdom) rather
than their physical bulk and if life experience can be somehow standardized and measured
in years, then it is predicted that one can more easily say:

(82) These people are 50 years old each. They should know well enough that quarreling
with each other won’t get them anything.

This is because the measurement of life experience (measured in years lived) is again
monotonic to the number of people.

49 Given the standard assumption that the domains of individuals and events are partially ordered,
thematic functions are also monotonic.

50 For events with overlapping temporal intervals, collective duration can be measured along the lines
of Krifka (1998).

51 Note that age measurement is monotonic relative to time, as more time means greater age.
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7.3 Hidden dimension
Sometimes, the dimension can be tricky to determine. In the following example offered by
a reviewer,

(83) The cookies are 10cm each in diameter.

there seems to be no ‘collective diameter’ for the plurality consisting of several cookies.
However, there is collective length for several diameters, which can be found by adding
up the diameters of the cookies. If the involved measure function (or more accurately the
dimension) is simply length, then additivity is not an issue here.

7.4 Loudness and brightness
Not all measurements are additive in a straightforward way. On the surface, we cannot
simply add up the noise levels of two speakers: we can’t say two speakers each of which
is blasting 50db together gives out 100db. However, it is not because of the inability to
add up sound pressures but because sound pressures are computed using logarithmic scales.
The two speakers, when blasting sound waves not interacting with each other, are additive
and give rise to an output of 53dB. More concretely, dB = 10log( power

reference power ). Assuming
power = 100000 and reference power = 1, we get 50dB. Now, if there is twice the power
with two speakers with the same reference power, then we get 53dB (i.e., 10log(200000)).
This shows us that in principle sound wave measurement is additive. For this reason, it is
predicted that (84) is acceptable.

(84) Those two speakers are blasting 50db each.

However, what about speakers that are placed far away so a person cannot hear both
speakers at the same time? If a person moves close to a speaker and reports 50db of loudness
from it, and moves away from it to get closer to another speaker, of which they also report
50db of loudness. If my understanding of the reviewer is correct, those who can accept (84)
in the first scenario would still accept it in this scenario. If this is indeed the case, then we
have to conclude that plurality measurement is not as simple as measuring two physical
entities at a specific time and location. One may need to add an intensional component to
plurality measurement to allow for measuring entities concatenated in a non-actual space
and time.52

Somewhat relatedly, a reviewer showed that color shades are compatible binominal each:

(85) This weekend I whitened my front teeth by two shades each.

The measure function involved in (85) is likely not perceived whiteness but perceived change
in whiteness. If this is correct, then it is similar to the temperature change example discussed
in (19-b) and (19-c). A change in color shade can perhaps be measured by how much
whiteness (light ref lected by an object) has been added to an object as compared to its
previous color. So, if there are two (upper) front teeth being lightened and each of them is

52 A potentially related example, also provided by the same reviewer, shows that one can talk about
‘collective’ impact (just like ‘collective’ noise):

(i) The two outboard crewmen sustained 25 g’s each at impact.

D
ow

nloaded from
 https://academ

ic.oup.com
/jos/article/39/1/159/6517775 by guest on 30 January 2023



206 Jess H.-K. Law

lighted by two shades. Then together the change in the light ref lected by the two teeth is
bigger than the change in the light ref lected by just one of the two teeth.

7.5 Percentage measurement
Among the challenging examples raised by the reviewer, there is a specific subset concerning
percentage:

(86) a. The Dow and the S&P gained 3 points each.
b. The governor has given his staff members raises of up to 20 percent each.

The challenges posed by these examples are two-fold. First, the percentages may be
computed with different base numbers. For example, Employee A may have a salary of
100K and Employee B a salary of 200K. If A got a 10% raise and B a 15% raise. Their
collective raise lies somewhere between 10% and 15% (i.e., 13.3%). It is predicted to not
satisfy the monotonicity constraint. Second, even if the percentages are computed with the
same base, say 100K, they seemingly fail to be monotonic. If both A and B got a raise of
10%, their collective raise is still 10%. This is because the percentage of their collective raise
is computed based on their collective salary. Since they increase in the same proportion, the
ratio does not change.

It’s not difficult to see how this challenge can be resolved. The problem disappears if
absolute change rather than relative change is considered. If a husband and a wife each get
a 10% raise from their employer, they are able to bring more money home than if just one
of them gets a 10% raise. So, if the proportional change in these examples can somehow be
converted to absolute change, then binominal each is licensed. For concreteness, in (86-a)
the monotonicity constraint requires that the absolute change of the weighted average stock
value in the two indices is bigger than the relevant absolute change in each index. In (86-b)
it is required that the absolute monetary value associated with the two raises is bigger than
each raise.53 How exactly the suggestion here should be implemented is reserved for future
research.

7.6 Remaining challenges from non-monotonic measurement
The last set of potentially problematic examples are the hardest to explain away. According
to a reviewer, the following examples are all well-formed:

(87) Speed
a. All the fans work and are pushing 4000+/- rpms each.’
b. This program says they’re spinning at around 2000 rpm each.

(88) Air pressure
The balloons were inflated to 12 atmospheres each.

53 I suspect the same explanation holds for the range example:

(i) The dynamic range and the temporal range were improved by four orders of magnitude each.
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(89) Alcoholic concentration
‘Its Cosmopolitan and Margarita ice pops contain 6.41 percent alcohol each.’

(90) Resolution
‘...the current displays for Amazon.com’s Kindle Fire and Barnes & Noble’s Nook,
which sport tech specs of 169 pixels per inch each.’

If these examples are indeed well-formed, they pose a more serious threat to the mono-
tonicity constraint than previous examples considered earlier in this section. This is because
it is not clear that any of the previous remedies readily apply to these examples, with the
exception of proxy measurement.

If we are to handle these examples as involving proxy measurement, we could say that
the measurement involved in (87) can be reanalyzed as the amount of air being pushed
(measured in rmp), or simply the number of rounds the fans can make together per minute,
but crucially not the spinning speed. Both measurements are monotonic: more fans push
more air; more fans make more rounds per minute (but not per fan). Similarly, what is
being measured could be argued to be the amount of air in the balloons (and not the air
pressure) in (88), the amount of ethanol (and not the concentration) in (89), and the screen
size (and not screen resolution) in (90). All the proxy measurements are, again, monotonic.

However, this line of reasoning runs the risk of rendering the monotonicity constraint
unfalsifiable, as also pointed out by a reviewer. If all non-monotonic measurements can be
reanalyzed as proxy, monotonic measurements, then why do we observe ungrammaticality
at the first place with non-monotonic measurements? To maintain the feasibility of proxy
measurements, it is necessary to answer why proxy measurement is easier with some
measurements but not others.

One possibility is to tie the availability of proxy measurement to the commonality of a
measure phrase: if a measure phrase is very common (like 20 km per hour, 50 miles per
hour, or 70 degrees Fahrenheit), it might be strongly tied to a specific measure function. For
this reason, it is harder to shift it to another measure function for proxy measurement to be
possible. How far this correlation takes us will need to be clarified with more research.

Alternatively, it may be useful to study closer the well-formedness of the examples in
(87) – (90). It has been suggested to me that although (91) is similar to (90) in invoking
resolution measurement, it is more degraded:

(91) ?The displays of these tablets are 169 pixels per inch each. (Simon Charlow, p.c.)

It is unclear why the same measurement fares better in (90) but worse in (91). To the extent
that the contrast is a robust one, more factors need to be considered in the licensing of
binominal each.

8 CONCLUSION

Borrowing an insight from previous studies that distributivity makes available functional
dependencies with a nontrivial internal structure (Schein, 1993; Lasersohn, 1995; Krifka,
1996b; van den Berg, 1996; Landman, 2000; Nouwen, 2003; Brasoveanu, 2008; Cham-
pollion, 2010, 2017), this paper highlights the mereological nature of such dependencies.
On the empirical front, it is shown that the mereological nature of distributive dependencies

D
ow

nloaded from
 https://academ

ic.oup.com
/jos/article/39/1/159/6517775 by guest on 30 January 2023



208 Jess H.-K. Law

supports a monotonicity constraint, which subsumes three puzzling selectional requirements
of binominal each reported in the literature (Safir & Stowell, 1988; Sutton, 1993; Zhang,
2013; Zimmermann, 2002). On the theoretical front, this paper proposes a novel version
of dynamic plural logic that combines merits from van den Berg (1996)’s DPlL (i.e.
dependencies are not introduced by default) and Brasoveanu (2008)’s PCDRT (i.e. domain
pluralities are introduced in the range of assignment functions).
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